对流Brinkman-Forchheimer扩展Darcy方程的反馈镇定

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Sagar Gautam, Kush Kinra, Manil T. Mohan
{"title":"对流Brinkman-Forchheimer扩展Darcy方程的反馈镇定","authors":"Sagar Gautam,&nbsp;Kush Kinra,&nbsp;Manil T. Mohan","doi":"10.1007/s00245-024-10217-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the following controlled convective Brinkman-Forchheimer extended Darcy (CBFeD) system is considered in a <i>d</i>-dimensional torus: </p><div><div><span>$$\\begin{aligned} \\frac{\\partial {\\varvec{y}}}{\\partial t}-\\mu \\Delta {\\varvec{y}}+({\\varvec{y}}\\cdot \\nabla ){\\varvec{y}}+\\alpha {\\varvec{y}}+\\beta \\vert {\\varvec{y}}\\vert ^{r-1}{\\varvec{y}}+\\gamma \\vert {\\varvec{y}}\\vert ^{q-1}{\\varvec{y}}+\\nabla p={\\varvec{g}}+{\\varvec{u}},\\ \\nabla \\cdot {\\varvec{y}}=0, \\end{aligned}$$</span></div></div><p>where <span>\\(d\\in \\{2,3\\}\\)</span>, <span>\\(\\mu ,\\alpha ,\\beta &gt;0\\)</span>, <span>\\(\\gamma \\in {\\mathbb {R}}\\)</span>, <span>\\(r,q\\in [1,\\infty )\\)</span> with <span>\\(r&gt;q\\ge 1\\)</span>. We prove the exponential stabilization of CBFeD system by finite- and infinite-dimensional feedback controllers. The solvability of the controlled problem is achieved by using the abstract theory of <i>m</i>-accretive operators and density arguments. As an application of the above solvability result, by using infinite-dimensional feedback controllers, we demonstrate exponential stability results such that the solution preserves an invariance condition for a given closed and convex set. By utilizing the unique continuation property of controllability for finite-dimensional systems, we construct a finite-dimensional feedback controller which exponentially stabilizes CBFeD system locally, where the control is localized in a smaller subdomain. Furthermore, we establish the local exponential stability of CBFeD system via proportional controllers.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedback Stabilization of Convective Brinkman-Forchheimer Extended Darcy Equations\",\"authors\":\"Sagar Gautam,&nbsp;Kush Kinra,&nbsp;Manil T. Mohan\",\"doi\":\"10.1007/s00245-024-10217-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the following controlled convective Brinkman-Forchheimer extended Darcy (CBFeD) system is considered in a <i>d</i>-dimensional torus: </p><div><div><span>$$\\\\begin{aligned} \\\\frac{\\\\partial {\\\\varvec{y}}}{\\\\partial t}-\\\\mu \\\\Delta {\\\\varvec{y}}+({\\\\varvec{y}}\\\\cdot \\\\nabla ){\\\\varvec{y}}+\\\\alpha {\\\\varvec{y}}+\\\\beta \\\\vert {\\\\varvec{y}}\\\\vert ^{r-1}{\\\\varvec{y}}+\\\\gamma \\\\vert {\\\\varvec{y}}\\\\vert ^{q-1}{\\\\varvec{y}}+\\\\nabla p={\\\\varvec{g}}+{\\\\varvec{u}},\\\\ \\\\nabla \\\\cdot {\\\\varvec{y}}=0, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(d\\\\in \\\\{2,3\\\\}\\\\)</span>, <span>\\\\(\\\\mu ,\\\\alpha ,\\\\beta &gt;0\\\\)</span>, <span>\\\\(\\\\gamma \\\\in {\\\\mathbb {R}}\\\\)</span>, <span>\\\\(r,q\\\\in [1,\\\\infty )\\\\)</span> with <span>\\\\(r&gt;q\\\\ge 1\\\\)</span>. We prove the exponential stabilization of CBFeD system by finite- and infinite-dimensional feedback controllers. The solvability of the controlled problem is achieved by using the abstract theory of <i>m</i>-accretive operators and density arguments. As an application of the above solvability result, by using infinite-dimensional feedback controllers, we demonstrate exponential stability results such that the solution preserves an invariance condition for a given closed and convex set. By utilizing the unique continuation property of controllability for finite-dimensional systems, we construct a finite-dimensional feedback controller which exponentially stabilizes CBFeD system locally, where the control is localized in a smaller subdomain. Furthermore, we establish the local exponential stability of CBFeD system via proportional controllers.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10217-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10217-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,在d维环面中考虑以下受控对流Brinkman-Forchheimer扩展达西(CBFeD)系统:$$\begin{aligned} \frac{\partial {\varvec{y}}}{\partial t}-\mu \Delta {\varvec{y}}+({\varvec{y}}\cdot \nabla ){\varvec{y}}+\alpha {\varvec{y}}+\beta \vert {\varvec{y}}\vert ^{r-1}{\varvec{y}}+\gamma \vert {\varvec{y}}\vert ^{q-1}{\varvec{y}}+\nabla p={\varvec{g}}+{\varvec{u}},\ \nabla \cdot {\varvec{y}}=0, \end{aligned}$$其中\(d\in \{2,3\}\), \(\mu ,\alpha ,\beta >0\), \(\gamma \in {\mathbb {R}}\), \(r,q\in [1,\infty )\)与\(r>q\ge 1\)。利用有限维和无限维反馈控制器证明了CBFeD系统的指数镇定性。利用m-增生算子和密度参数的抽象理论,实现了控制问题的可解性。作为上述可解性结果的一个应用,我们利用无穷维反馈控制器证明了指数稳定性结果,使得解对于给定的闭凸集保持不变条件。利用有限维系统可控性的唯一延拓性质,构造了一个有限维反馈控制器,该控制器局部指数稳定CBFeD系统,其中控制局部在较小的子域内。在此基础上,利用比例控制器建立了CBFeD系统的局部指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedback Stabilization of Convective Brinkman-Forchheimer Extended Darcy Equations

In this article, the following controlled convective Brinkman-Forchheimer extended Darcy (CBFeD) system is considered in a d-dimensional torus:

$$\begin{aligned} \frac{\partial {\varvec{y}}}{\partial t}-\mu \Delta {\varvec{y}}+({\varvec{y}}\cdot \nabla ){\varvec{y}}+\alpha {\varvec{y}}+\beta \vert {\varvec{y}}\vert ^{r-1}{\varvec{y}}+\gamma \vert {\varvec{y}}\vert ^{q-1}{\varvec{y}}+\nabla p={\varvec{g}}+{\varvec{u}},\ \nabla \cdot {\varvec{y}}=0, \end{aligned}$$

where \(d\in \{2,3\}\), \(\mu ,\alpha ,\beta >0\), \(\gamma \in {\mathbb {R}}\), \(r,q\in [1,\infty )\) with \(r>q\ge 1\). We prove the exponential stabilization of CBFeD system by finite- and infinite-dimensional feedback controllers. The solvability of the controlled problem is achieved by using the abstract theory of m-accretive operators and density arguments. As an application of the above solvability result, by using infinite-dimensional feedback controllers, we demonstrate exponential stability results such that the solution preserves an invariance condition for a given closed and convex set. By utilizing the unique continuation property of controllability for finite-dimensional systems, we construct a finite-dimensional feedback controller which exponentially stabilizes CBFeD system locally, where the control is localized in a smaller subdomain. Furthermore, we establish the local exponential stability of CBFeD system via proportional controllers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信