{"title":"调制空间中具有Hartree型非线性的Dirac方程","authors":"Seongyeon Kim, Hyeongjin Lee, Ihyeok Seo","doi":"10.1007/s00013-024-02079-6","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain the local well-posedness for Dirac equations with a Hartree type nonlinearity derived by decoupling the Dirac–Klein–Gordon system. We extend the function space of initial data, enabling us to handle initial data that were not addressed in previous studies.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 2","pages":"195 - 204"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Dirac equations with Hartree type nonlinearity in modulation spaces\",\"authors\":\"Seongyeon Kim, Hyeongjin Lee, Ihyeok Seo\",\"doi\":\"10.1007/s00013-024-02079-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain the local well-posedness for Dirac equations with a Hartree type nonlinearity derived by decoupling the Dirac–Klein–Gordon system. We extend the function space of initial data, enabling us to handle initial data that were not addressed in previous studies.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 2\",\"pages\":\"195 - 204\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02079-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02079-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
通过对Dirac - klein - gordon系统进行解耦,得到了具有Hartree型非线性的Dirac方程的局部适定性。我们扩展了初始数据的函数空间,使我们能够处理在以前的研究中没有解决的初始数据。
On Dirac equations with Hartree type nonlinearity in modulation spaces
We obtain the local well-posedness for Dirac equations with a Hartree type nonlinearity derived by decoupling the Dirac–Klein–Gordon system. We extend the function space of initial data, enabling us to handle initial data that were not addressed in previous studies.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.