半环的模估计及其在边界扩展问题中的应用

IF 1.6 3区 数学 Q1 MATHEMATICS
Anatoly Golberg, Toshiyuki Sugawa, Matti Vuorinen
{"title":"半环的模估计及其在边界扩展问题中的应用","authors":"Anatoly Golberg,&nbsp;Toshiyuki Sugawa,&nbsp;Matti Vuorinen","doi":"10.1007/s13324-025-01019-z","DOIUrl":null,"url":null,"abstract":"<div><p>In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3–4):539–558, 2020), we proved that the complementary components of a ring domain in <span>\\(\\mathbb {R}^n\\)</span> with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01019-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Modulus estimates of semirings with applications to boundary extension problems\",\"authors\":\"Anatoly Golberg,&nbsp;Toshiyuki Sugawa,&nbsp;Matti Vuorinen\",\"doi\":\"10.1007/s13324-025-01019-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3–4):539–558, 2020), we proved that the complementary components of a ring domain in <span>\\\\(\\\\mathbb {R}^n\\\\)</span> with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01019-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01019-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01019-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的论文(Golberg et al. In computational Methods Funct Theory 20(3-4): 539-558, 2020)中,我们证明了在\(\mathbb {R}^n\)中具有足够大模量的环域的互补分量可以被一个环形环域分开,并将这一结果应用于拟共形映射下的边界对应问题。在本文中,我们继续这一工作,并研究了一类更大的映射的边界扩展问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulus estimates of semirings with applications to boundary extension problems

In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3–4):539–558, 2020), we proved that the complementary components of a ring domain in \(\mathbb {R}^n\) with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信