磁性拉普拉斯算子的Dirichlet和Neumann特征值之间的不等式

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Vladimir Lotoreichik
{"title":"磁性拉普拉斯算子的Dirichlet和Neumann特征值之间的不等式","authors":"Vladimir Lotoreichik","doi":"10.1007/s11005-025-01901-8","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the magnetic Laplacian with the homogeneous magnetic field in two and three dimensions. We prove that the <span>\\((k+1)\\)</span>-th magnetic Neumann eigenvalue of a bounded convex planar domain is not larger than its <i>k</i>-th magnetic Dirichlet eigenvalue for all <span>\\(k\\in {{\\mathbb {N}}}\\)</span>. In three dimensions, we restrict our attention to convex domains, which are invariant under rotation by an angle of <span>\\(\\pi \\)</span> around an axis parallel to the magnetic field. For such domains, we prove that the <span>\\((k+2)\\)</span>-th magnetic Neumann eigenvalue is not larger than the <i>k</i>-th magnetic Dirichlet eigenvalue provided that this Dirichlet eigenvalue is simple. The proofs rely on a modification of the strategy suggested by Payne and developed further by Levine and Weinberger.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01901-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Inequalities between Dirichlet and Neumann eigenvalues of the magnetic Laplacian\",\"authors\":\"Vladimir Lotoreichik\",\"doi\":\"10.1007/s11005-025-01901-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the magnetic Laplacian with the homogeneous magnetic field in two and three dimensions. We prove that the <span>\\\\((k+1)\\\\)</span>-th magnetic Neumann eigenvalue of a bounded convex planar domain is not larger than its <i>k</i>-th magnetic Dirichlet eigenvalue for all <span>\\\\(k\\\\in {{\\\\mathbb {N}}}\\\\)</span>. In three dimensions, we restrict our attention to convex domains, which are invariant under rotation by an angle of <span>\\\\(\\\\pi \\\\)</span> around an axis parallel to the magnetic field. For such domains, we prove that the <span>\\\\((k+2)\\\\)</span>-th magnetic Neumann eigenvalue is not larger than the <i>k</i>-th magnetic Dirichlet eigenvalue provided that this Dirichlet eigenvalue is simple. The proofs rely on a modification of the strategy suggested by Payne and developed further by Levine and Weinberger.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01901-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01901-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01901-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑二维和三维均匀磁场下的磁性拉普拉斯算子。证明了有界凸平面区域的\((k+1)\) -第k个磁诺伊曼特征值不大于其所有\(k\in {{\mathbb {N}}}\)的第k个磁狄利克雷特征值。在三维空间中,我们将注意力限制在凸域上,凸域在绕平行于磁场的轴旋转\(\pi \)角度时是不变的。对于这些区域,我们证明了\((k+2)\) -第磁性诺伊曼特征值不大于第k磁性狄利克雷特征值,只要这个狄利克雷特征值是简单的。这些证明依赖于对佩恩提出的策略的修改,并由莱文和温伯格进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities between Dirichlet and Neumann eigenvalues of the magnetic Laplacian

We consider the magnetic Laplacian with the homogeneous magnetic field in two and three dimensions. We prove that the \((k+1)\)-th magnetic Neumann eigenvalue of a bounded convex planar domain is not larger than its k-th magnetic Dirichlet eigenvalue for all \(k\in {{\mathbb {N}}}\). In three dimensions, we restrict our attention to convex domains, which are invariant under rotation by an angle of \(\pi \) around an axis parallel to the magnetic field. For such domains, we prove that the \((k+2)\)-th magnetic Neumann eigenvalue is not larger than the k-th magnetic Dirichlet eigenvalue provided that this Dirichlet eigenvalue is simple. The proofs rely on a modification of the strategy suggested by Payne and developed further by Levine and Weinberger.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信