涉及分数阶p-拉普拉斯的临界Choquard方程的多重归一化解 \({\mathbb {R}}^{N}\)

IF 1.4 3区 数学 Q1 MATHEMATICS
Xin Zhang, Thin Van Nguyen, Sihua Liang
{"title":"涉及分数阶p-拉普拉斯的临界Choquard方程的多重归一化解 \\({\\mathbb {R}}^{N}\\)","authors":"Xin Zhang,&nbsp;Thin Van Nguyen,&nbsp;Sihua Liang","doi":"10.1007/s13324-025-01011-7","DOIUrl":null,"url":null,"abstract":"<div><p>The paper mainly investigates the existence of multiple normalized solutions for critical Choquard equation with involving fractional <i>p</i>-Laplacian in <span>\\({\\mathbb {R}}^{N}\\)</span>: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\! \\begin{array}{lll} (-\\Delta )_{p}^{s}u \\!+\\!Z(\\kappa x)|u|^{p-2}u\\!=\\!\\lambda |u|^{p-2}u\\!+\\! \\Big [\\dfrac{1}{|x|^{N-\\alpha }}*|u|^{q}\\!\\Big ]|u|^{q-2}u\\!+\\!\\sigma |u|^{p_{s}^{*}-2}u &amp; \\text{ in }\\ {\\mathbb {R}}^{N}\\!, \\\\ \\displaystyle \\int _{{\\mathbb {R}}^{N}}|u|^{p}dx=a^{p}, \\end{array} \\right. \\end{aligned}$$</span></div></div><p>where <span>\\(\\kappa &gt; 0\\)</span> is a small parameter, <span>\\(\\lambda \\in {\\mathbb {R}}\\)</span> is a Lagrange multiplier, <span>\\(Z:{\\mathbb {R}}^{N}\\rightarrow [0,\\infty )\\)</span> is a continuous function. Under the right conditions, together with the minimization techniques, truncated method, variational methods and the Lusternik–Schnirelmann category, we obtain the existence of multiple normalized solutions, which can be viewed as a partial extension of the previous results concerning the existence of normalized solutions to this problem in the case of <span>\\(s = 1\\)</span>, <span>\\(p = 2\\)</span> and subcritical case.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions to critical Choquard equation involving fractional p-Laplacian in \\\\({\\\\mathbb {R}}^{N}\\\\)\",\"authors\":\"Xin Zhang,&nbsp;Thin Van Nguyen,&nbsp;Sihua Liang\",\"doi\":\"10.1007/s13324-025-01011-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper mainly investigates the existence of multiple normalized solutions for critical Choquard equation with involving fractional <i>p</i>-Laplacian in <span>\\\\({\\\\mathbb {R}}^{N}\\\\)</span>: </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\! \\\\begin{array}{lll} (-\\\\Delta )_{p}^{s}u \\\\!+\\\\!Z(\\\\kappa x)|u|^{p-2}u\\\\!=\\\\!\\\\lambda |u|^{p-2}u\\\\!+\\\\! \\\\Big [\\\\dfrac{1}{|x|^{N-\\\\alpha }}*|u|^{q}\\\\!\\\\Big ]|u|^{q-2}u\\\\!+\\\\!\\\\sigma |u|^{p_{s}^{*}-2}u &amp; \\\\text{ in }\\\\ {\\\\mathbb {R}}^{N}\\\\!, \\\\\\\\ \\\\displaystyle \\\\int _{{\\\\mathbb {R}}^{N}}|u|^{p}dx=a^{p}, \\\\end{array} \\\\right. \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\kappa &gt; 0\\\\)</span> is a small parameter, <span>\\\\(\\\\lambda \\\\in {\\\\mathbb {R}}\\\\)</span> is a Lagrange multiplier, <span>\\\\(Z:{\\\\mathbb {R}}^{N}\\\\rightarrow [0,\\\\infty )\\\\)</span> is a continuous function. Under the right conditions, together with the minimization techniques, truncated method, variational methods and the Lusternik–Schnirelmann category, we obtain the existence of multiple normalized solutions, which can be viewed as a partial extension of the previous results concerning the existence of normalized solutions to this problem in the case of <span>\\\\(s = 1\\\\)</span>, <span>\\\\(p = 2\\\\)</span> and subcritical case.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01011-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01011-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了\({\mathbb {R}}^{N}\): $$\begin{aligned} \left\{ \! \begin{array}{lll} (-\Delta )_{p}^{s}u \!+\!Z(\kappa x)|u|^{p-2}u\!=\!\lambda |u|^{p-2}u\!+\! \Big [\dfrac{1}{|x|^{N-\alpha }}*|u|^{q}\!\Big ]|u|^{q-2}u\!+\!\sigma |u|^{p_{s}^{*}-2}u & \text{ in }\ {\mathbb {R}}^{N}\!, \\ \displaystyle \int _{{\mathbb {R}}^{N}}|u|^{p}dx=a^{p}, \end{array} \right. \end{aligned}$$中含有分数阶p-拉普拉斯算子的临界Choquard方程的多重归一化解的存在性,其中\(\kappa > 0\)为小参数,\(\lambda \in {\mathbb {R}}\)为拉格朗日乘子,\(Z:{\mathbb {R}}^{N}\rightarrow [0,\infty )\)为连续函数。在适当的条件下,结合最小化技术、截断方法、变分方法和Lusternik-Schnirelmann范畴,我们得到了该问题存在多个规范化解的结论,这可以看作是先前关于该问题在\(s = 1\)、\(p = 2\)和次临界情况下存在规范化解的结果的部分推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple normalized solutions to critical Choquard equation involving fractional p-Laplacian in \({\mathbb {R}}^{N}\)

The paper mainly investigates the existence of multiple normalized solutions for critical Choquard equation with involving fractional p-Laplacian in \({\mathbb {R}}^{N}\):

$$\begin{aligned} \left\{ \! \begin{array}{lll} (-\Delta )_{p}^{s}u \!+\!Z(\kappa x)|u|^{p-2}u\!=\!\lambda |u|^{p-2}u\!+\! \Big [\dfrac{1}{|x|^{N-\alpha }}*|u|^{q}\!\Big ]|u|^{q-2}u\!+\!\sigma |u|^{p_{s}^{*}-2}u & \text{ in }\ {\mathbb {R}}^{N}\!, \\ \displaystyle \int _{{\mathbb {R}}^{N}}|u|^{p}dx=a^{p}, \end{array} \right. \end{aligned}$$

where \(\kappa > 0\) is a small parameter, \(\lambda \in {\mathbb {R}}\) is a Lagrange multiplier, \(Z:{\mathbb {R}}^{N}\rightarrow [0,\infty )\) is a continuous function. Under the right conditions, together with the minimization techniques, truncated method, variational methods and the Lusternik–Schnirelmann category, we obtain the existence of multiple normalized solutions, which can be viewed as a partial extension of the previous results concerning the existence of normalized solutions to this problem in the case of \(s = 1\), \(p = 2\) and subcritical case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信