轨道上的四面体瞬子

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Richard J. Szabo, Michelangelo Tirelli
{"title":"轨道上的四面体瞬子","authors":"Richard J. Szabo,&nbsp;Michelangelo Tirelli","doi":"10.1007/s11005-025-01903-6","DOIUrl":null,"url":null,"abstract":"<div><p>Given a homomorphism <span>\\(\\tau \\)</span> from a suitable finite group <span>\\({\\mathsf {\\Gamma }}\\)</span> to <span>\\(\\textsf{SU}(4)\\)</span> with image <span>\\({\\mathsf {\\Gamma }}^\\tau \\)</span>, we construct a cohomological gauge theory on a non-commutative resolution of the quotient singularity <span>\\(\\mathbbm {C}^4/{\\mathsf {\\Gamma }}^\\tau \\)</span> whose BRST fixed points are <span>\\({\\mathsf {\\Gamma }}\\)</span>-invariant tetrahedron instantons on a generally non-effective orbifold. The partition function computes the expectation values of complex codimension one defect operators in rank <i>r</i> cohomological Donaldson–Thomas theory on a flat gerbe over the quotient stack <span>\\([\\mathbbm {C}^4/\\,{\\mathsf {\\Gamma }}^\\tau ]\\)</span>. We describe the generalized ADHM parametrization of the tetrahedron instanton moduli space and evaluate the orbifold partition functions through virtual torus localization. If <span>\\({\\mathsf {\\Gamma }}\\)</span> is an abelian group the partition function is expressed as a combinatorial series over arrays of <span>\\({\\mathsf {\\Gamma }}\\)</span>-coloured plane partitions, while if <span>\\({\\mathsf {\\Gamma }}\\)</span> is non-abelian the partition function localizes onto a sum over torus-invariant connected components of the moduli space labelled by lower-dimensional partitions. When <span>\\({\\mathsf {\\Gamma }}=\\mathbbm {Z}_n\\)</span> is a finite abelian subgroup of <span>\\(\\textsf{SL}(2,\\mathbbm {C})\\)</span>, we exhibit the reduction of Donaldson–Thomas theory on the toric Calabi–Yau four-orbifold <span>\\(\\mathbbm {C}^2/\\,{\\mathsf {\\Gamma }}\\times \\mathbbm {C}^2\\)</span> to the cohomological field theory of tetrahedron instantons, from which we express the partition function as a closed infinite product formula. We also use the crepant resolution correspondence to derive a closed formula for the partition function on any polyhedral singularity.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01903-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Tetrahedron instantons on orbifolds\",\"authors\":\"Richard J. Szabo,&nbsp;Michelangelo Tirelli\",\"doi\":\"10.1007/s11005-025-01903-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a homomorphism <span>\\\\(\\\\tau \\\\)</span> from a suitable finite group <span>\\\\({\\\\mathsf {\\\\Gamma }}\\\\)</span> to <span>\\\\(\\\\textsf{SU}(4)\\\\)</span> with image <span>\\\\({\\\\mathsf {\\\\Gamma }}^\\\\tau \\\\)</span>, we construct a cohomological gauge theory on a non-commutative resolution of the quotient singularity <span>\\\\(\\\\mathbbm {C}^4/{\\\\mathsf {\\\\Gamma }}^\\\\tau \\\\)</span> whose BRST fixed points are <span>\\\\({\\\\mathsf {\\\\Gamma }}\\\\)</span>-invariant tetrahedron instantons on a generally non-effective orbifold. The partition function computes the expectation values of complex codimension one defect operators in rank <i>r</i> cohomological Donaldson–Thomas theory on a flat gerbe over the quotient stack <span>\\\\([\\\\mathbbm {C}^4/\\\\,{\\\\mathsf {\\\\Gamma }}^\\\\tau ]\\\\)</span>. We describe the generalized ADHM parametrization of the tetrahedron instanton moduli space and evaluate the orbifold partition functions through virtual torus localization. If <span>\\\\({\\\\mathsf {\\\\Gamma }}\\\\)</span> is an abelian group the partition function is expressed as a combinatorial series over arrays of <span>\\\\({\\\\mathsf {\\\\Gamma }}\\\\)</span>-coloured plane partitions, while if <span>\\\\({\\\\mathsf {\\\\Gamma }}\\\\)</span> is non-abelian the partition function localizes onto a sum over torus-invariant connected components of the moduli space labelled by lower-dimensional partitions. When <span>\\\\({\\\\mathsf {\\\\Gamma }}=\\\\mathbbm {Z}_n\\\\)</span> is a finite abelian subgroup of <span>\\\\(\\\\textsf{SL}(2,\\\\mathbbm {C})\\\\)</span>, we exhibit the reduction of Donaldson–Thomas theory on the toric Calabi–Yau four-orbifold <span>\\\\(\\\\mathbbm {C}^2/\\\\,{\\\\mathsf {\\\\Gamma }}\\\\times \\\\mathbbm {C}^2\\\\)</span> to the cohomological field theory of tetrahedron instantons, from which we express the partition function as a closed infinite product formula. We also use the crepant resolution correspondence to derive a closed formula for the partition function on any polyhedral singularity.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01903-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01903-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01903-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

给定一个合适的有限群\({\mathsf {\Gamma }}\)到\(\textsf{SU}(4)\)的同态\(\tau \),图像\({\mathsf {\Gamma }}^\tau \),我们构造了商奇点\(\mathbbm {C}^4/{\mathsf {\Gamma }}^\tau \)的非交换分辨率上的上同规范理论,其BRST不动点是一般非有效轨道上的\({\mathsf {\Gamma }}\)不变四面体实例。配分函数计算了r秩上同调Donaldson-Thomas理论中复余维1缺陷算子在商堆栈上的平面gerbe上的期望值\([\mathbbm {C}^4/\,{\mathsf {\Gamma }}^\tau ]\)。本文描述了四面体瞬时模空间的广义ADHM参数化,并通过虚拟环面定位计算了轨道配分函数。如果\({\mathsf {\Gamma }}\)是阿贝尔群,则配分函数表示为\({\mathsf {\Gamma }}\)彩色平面分区数组上的组合级数,而如果\({\mathsf {\Gamma }}\)是非阿贝尔群,则配分函数定位于由低维分区标记的模空间的环面不变连通分量的和。当\({\mathsf {\Gamma }}=\mathbbm {Z}_n\)是\(\textsf{SL}(2,\mathbbm {C})\)的有限阿贝尔子群时,我们将环面Calabi-Yau四轨道\(\mathbbm {C}^2/\,{\mathsf {\Gamma }}\times \mathbbm {C}^2\)上的Donaldson-Thomas理论约化为四面体实例的上同场理论,并将配分函数表示为一个封闭的无限积公式。我们还利用渐变分辨率对应导出了任意多面体奇点上配分函数的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tetrahedron instantons on orbifolds

Given a homomorphism \(\tau \) from a suitable finite group \({\mathsf {\Gamma }}\) to \(\textsf{SU}(4)\) with image \({\mathsf {\Gamma }}^\tau \), we construct a cohomological gauge theory on a non-commutative resolution of the quotient singularity \(\mathbbm {C}^4/{\mathsf {\Gamma }}^\tau \) whose BRST fixed points are \({\mathsf {\Gamma }}\)-invariant tetrahedron instantons on a generally non-effective orbifold. The partition function computes the expectation values of complex codimension one defect operators in rank r cohomological Donaldson–Thomas theory on a flat gerbe over the quotient stack \([\mathbbm {C}^4/\,{\mathsf {\Gamma }}^\tau ]\). We describe the generalized ADHM parametrization of the tetrahedron instanton moduli space and evaluate the orbifold partition functions through virtual torus localization. If \({\mathsf {\Gamma }}\) is an abelian group the partition function is expressed as a combinatorial series over arrays of \({\mathsf {\Gamma }}\)-coloured plane partitions, while if \({\mathsf {\Gamma }}\) is non-abelian the partition function localizes onto a sum over torus-invariant connected components of the moduli space labelled by lower-dimensional partitions. When \({\mathsf {\Gamma }}=\mathbbm {Z}_n\) is a finite abelian subgroup of \(\textsf{SL}(2,\mathbbm {C})\), we exhibit the reduction of Donaldson–Thomas theory on the toric Calabi–Yau four-orbifold \(\mathbbm {C}^2/\,{\mathsf {\Gamma }}\times \mathbbm {C}^2\) to the cohomological field theory of tetrahedron instantons, from which we express the partition function as a closed infinite product formula. We also use the crepant resolution correspondence to derive a closed formula for the partition function on any polyhedral singularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信