\((1+3)\)维的“量子相对性原理”是爱因斯坦的相对性原理

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Matthew J. Lake
{"title":"\\((1+3)\\)维的“量子相对性原理”是爱因斯坦的相对性原理","authors":"Matthew J. Lake","doi":"10.1140/epjc/s10052-024-13667-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the <span>\\((1+3)\\)</span>-dimensional ‘superboost’ operators, proposed in Dragan and Ekert’s most recent work on superluminal reference frames (Dragan et al. in Class Quantum Gravity 40(2): 025013, 2023), are simply the canonical Lorentz boosts, expressed in nonstandard notation. Their <span>\\((1+3)\\)</span>-dimensional ‘superflip’, which is claimed to interchange time and space dimensions for a superluminal observer, travelling with infinite speed, is equivalent to applying the identity operator together with an arbitrary relabeling. Physically, it corresponds to staying put within the canonical rest frame, then renaming space as ‘time’ and time as ‘space’. We conclude that their extension of the ‘quantum principle of relativity’, proposed in earlier work on <span>\\((1+1)\\)</span>-dimensional spacetimes (Dragan and Ekert in New J Phys 22(3): 033038, 2020), to ordinary Minkowski space, is simply Einstein’s principle of relativity, proposed in 1905.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13667-9.pdf","citationCount":"0","resultStr":"{\"title\":\"The \\\\((1+3)\\\\)-dimensional ‘quantum principle of relativity’ is Einstein’s principle of relativity\",\"authors\":\"Matthew J. Lake\",\"doi\":\"10.1140/epjc/s10052-024-13667-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the <span>\\\\((1+3)\\\\)</span>-dimensional ‘superboost’ operators, proposed in Dragan and Ekert’s most recent work on superluminal reference frames (Dragan et al. in Class Quantum Gravity 40(2): 025013, 2023), are simply the canonical Lorentz boosts, expressed in nonstandard notation. Their <span>\\\\((1+3)\\\\)</span>-dimensional ‘superflip’, which is claimed to interchange time and space dimensions for a superluminal observer, travelling with infinite speed, is equivalent to applying the identity operator together with an arbitrary relabeling. Physically, it corresponds to staying put within the canonical rest frame, then renaming space as ‘time’ and time as ‘space’. We conclude that their extension of the ‘quantum principle of relativity’, proposed in earlier work on <span>\\\\((1+1)\\\\)</span>-dimensional spacetimes (Dragan and Ekert in New J Phys 22(3): 033038, 2020), to ordinary Minkowski space, is simply Einstein’s principle of relativity, proposed in 1905.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13667-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13667-9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13667-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们表明,在Dragan和Ekert最近关于超光速参考系的工作中提出的\((1+3)\) -维“超级推进”算子(Dragan等人在量子引力类40(2):025013,2023中),只是用非标准符号表示的规范洛伦兹推进。他们的\((1+3)\)维“超级翻转”(superflip),声称可以为一个以无限速度旅行的超光速观察者交换时间和空间维度,相当于将恒等算子与任意重新标记一起应用。从物理上讲,它对应于保持在规范的静止框架内,然后将空间重命名为“时间”,将时间重命名为“空间”。我们得出的结论是,他们将先前在\((1+1)\)维时空的研究中提出的“量子相对性原理”(Dragan和Ekert在《新J物理学》22(3):033038,2020)扩展到普通的闵可夫斯基空间,就是爱因斯坦在1905年提出的相对性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The \((1+3)\)-dimensional ‘quantum principle of relativity’ is Einstein’s principle of relativity

We show that the \((1+3)\)-dimensional ‘superboost’ operators, proposed in Dragan and Ekert’s most recent work on superluminal reference frames (Dragan et al. in Class Quantum Gravity 40(2): 025013, 2023), are simply the canonical Lorentz boosts, expressed in nonstandard notation. Their \((1+3)\)-dimensional ‘superflip’, which is claimed to interchange time and space dimensions for a superluminal observer, travelling with infinite speed, is equivalent to applying the identity operator together with an arbitrary relabeling. Physically, it corresponds to staying put within the canonical rest frame, then renaming space as ‘time’ and time as ‘space’. We conclude that their extension of the ‘quantum principle of relativity’, proposed in earlier work on \((1+1)\)-dimensional spacetimes (Dragan and Ekert in New J Phys 22(3): 033038, 2020), to ordinary Minkowski space, is simply Einstein’s principle of relativity, proposed in 1905.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信