V. A. Shilov, S. V. Zazhigalov, M. A. Burmatova, A. N. Zagoruiko, P. V. Snytnikov
{"title":"生物柴油催化转化合成气的实验研究与数学建模","authors":"V. A. Shilov, S. V. Zazhigalov, M. A. Burmatova, A. N. Zagoruiko, P. V. Snytnikov","doi":"10.1134/S2070050424700296","DOIUrl":null,"url":null,"abstract":"<p>The steam reforming and autothermal reforming of methyl oleate (model compound simulating biodiesel fuel) to synthesis gas in the presence of a structured Rh-containing catalyst have been studied. It has been shown that methyl oleate conversion occurs through a thermal cracking stage and the subsequent conversion of the resulting organic compounds with a shorter carbon skeleton. Based on test results, a mathematical model that takes into account the radial temperature gradient and represents an effective tool for the quantitative description and optimization of the biodiesel conversion process has been developed.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 4","pages":"451 - 459"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Studies and Mathematical Modeling of the Catalytic Conversion of Biodiesel Fuel to Synthesis Gas\",\"authors\":\"V. A. Shilov, S. V. Zazhigalov, M. A. Burmatova, A. N. Zagoruiko, P. V. Snytnikov\",\"doi\":\"10.1134/S2070050424700296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The steam reforming and autothermal reforming of methyl oleate (model compound simulating biodiesel fuel) to synthesis gas in the presence of a structured Rh-containing catalyst have been studied. It has been shown that methyl oleate conversion occurs through a thermal cracking stage and the subsequent conversion of the resulting organic compounds with a shorter carbon skeleton. Based on test results, a mathematical model that takes into account the radial temperature gradient and represents an effective tool for the quantitative description and optimization of the biodiesel conversion process has been developed.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 4\",\"pages\":\"451 - 459\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424700296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental Studies and Mathematical Modeling of the Catalytic Conversion of Biodiesel Fuel to Synthesis Gas
The steam reforming and autothermal reforming of methyl oleate (model compound simulating biodiesel fuel) to synthesis gas in the presence of a structured Rh-containing catalyst have been studied. It has been shown that methyl oleate conversion occurs through a thermal cracking stage and the subsequent conversion of the resulting organic compounds with a shorter carbon skeleton. Based on test results, a mathematical model that takes into account the radial temperature gradient and represents an effective tool for the quantitative description and optimization of the biodiesel conversion process has been developed.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.