区间对策中Shapley映射的强单调性公理化

IF 4.4 3区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Shinichi Ishihara, Junnosuke Shino
{"title":"区间对策中Shapley映射的强单调性公理化","authors":"Shinichi Ishihara,&nbsp;Junnosuke Shino","doi":"10.1007/s10479-024-06271-3","DOIUrl":null,"url":null,"abstract":"<div><p>Interval games are an extension of cooperative coalitional games in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval instead of a real number. In this paper, we focus on interval game versions of Shapley values. First, we modify Young’s strong monotonicity axiom for coalitional games into two versions so that they can be applied to the Shapley mapping and show that this can be axiomatized within the entire class of interval games using either version. Second, we derive the Shapley mapping for specific examples by employing two approaches used in the proof of the axiomatization and argue that our approach effectively works for a wide range of interval games.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"345 1","pages":"147 - 168"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-024-06271-3.pdf","citationCount":"0","resultStr":"{\"title\":\"An axiomatization of the Shapley mapping using strong monotonicity in interval games\",\"authors\":\"Shinichi Ishihara,&nbsp;Junnosuke Shino\",\"doi\":\"10.1007/s10479-024-06271-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interval games are an extension of cooperative coalitional games in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval instead of a real number. In this paper, we focus on interval game versions of Shapley values. First, we modify Young’s strong monotonicity axiom for coalitional games into two versions so that they can be applied to the Shapley mapping and show that this can be axiomatized within the entire class of interval games using either version. Second, we derive the Shapley mapping for specific examples by employing two approaches used in the proof of the axiomatization and argue that our approach effectively works for a wide range of interval games.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"345 1\",\"pages\":\"147 - 168\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-024-06271-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-024-06271-3\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06271-3","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

间隔博弈是合作联盟博弈的延伸,在合作联盟博弈中,参与者面临收益不确定性。特征函数因此分配一个闭区间而不是实数。本文主要研究Shapley值的区间博弈版本。首先,我们将联合对策的Young强单调性公理修改为两个版本,使它们可以应用于Shapley映射,并证明该公理可以在使用任何一个版本的整个区间对策类中公化。其次,我们通过使用证明公理化的两种方法推导出Shapley映射,并证明我们的方法有效地适用于广泛的区间博弈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An axiomatization of the Shapley mapping using strong monotonicity in interval games

Interval games are an extension of cooperative coalitional games in which players are assumed to face payoff uncertainty. Characteristic functions thus assign a closed interval instead of a real number. In this paper, we focus on interval game versions of Shapley values. First, we modify Young’s strong monotonicity axiom for coalitional games into two versions so that they can be applied to the Shapley mapping and show that this can be axiomatized within the entire class of interval games using either version. Second, we derive the Shapley mapping for specific examples by employing two approaches used in the proof of the axiomatization and argue that our approach effectively works for a wide range of interval games.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Operations Research
Annals of Operations Research 管理科学-运筹学与管理科学
CiteScore
7.90
自引率
16.70%
发文量
596
审稿时长
8.4 months
期刊介绍: The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications. In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信