{"title":"平面周期性桁架网络的大变形特性。第1部分。单节点单元的封闭形式解决方案","authors":"Massimo Cuomo, Claude Boutin, Carmelo Pannitteri","doi":"10.1007/s10659-025-10109-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on the derivation of explicit descriptions of networks in large deformation through the homogenization method of discrete media. Analytical models are established for the in-plane behavior of a planar periodic truss, whose cell contains a single node, as frequently encountered in practice. The cell is composed of bars that support only axial forces and are connected by perfect hinges. For the considered type of trusses, (given that the equilibrium conditions of the node and of the cell coincide) closed-form expressions for the local behaviour in the case of large deformations can be derived. This case makes it possible to combine the non-linearities arising from large deformations on the one hand and rheological characteristics on the other, and to compare their respective effects as a function of cell morphology. The results are illustrated by the shear and extension responses of specific trusses. The analysis is carried out for bars with stiffening, linear or softening behavior. The combination of the effects of geometrical non-linearities, rheological non-linearities and anisotropy results in particularly rich behaviors of the network.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10109-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Large Deformation Behavior of Plane Periodic Truss Networks. Part 1. Closed-Form Solution for Single Node Cells\",\"authors\":\"Massimo Cuomo, Claude Boutin, Carmelo Pannitteri\",\"doi\":\"10.1007/s10659-025-10109-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article focuses on the derivation of explicit descriptions of networks in large deformation through the homogenization method of discrete media. Analytical models are established for the in-plane behavior of a planar periodic truss, whose cell contains a single node, as frequently encountered in practice. The cell is composed of bars that support only axial forces and are connected by perfect hinges. For the considered type of trusses, (given that the equilibrium conditions of the node and of the cell coincide) closed-form expressions for the local behaviour in the case of large deformations can be derived. This case makes it possible to combine the non-linearities arising from large deformations on the one hand and rheological characteristics on the other, and to compare their respective effects as a function of cell morphology. The results are illustrated by the shear and extension responses of specific trusses. The analysis is carried out for bars with stiffening, linear or softening behavior. The combination of the effects of geometrical non-linearities, rheological non-linearities and anisotropy results in particularly rich behaviors of the network.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-025-10109-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-025-10109-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10109-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Large Deformation Behavior of Plane Periodic Truss Networks. Part 1. Closed-Form Solution for Single Node Cells
This article focuses on the derivation of explicit descriptions of networks in large deformation through the homogenization method of discrete media. Analytical models are established for the in-plane behavior of a planar periodic truss, whose cell contains a single node, as frequently encountered in practice. The cell is composed of bars that support only axial forces and are connected by perfect hinges. For the considered type of trusses, (given that the equilibrium conditions of the node and of the cell coincide) closed-form expressions for the local behaviour in the case of large deformations can be derived. This case makes it possible to combine the non-linearities arising from large deformations on the one hand and rheological characteristics on the other, and to compare their respective effects as a function of cell morphology. The results are illustrated by the shear and extension responses of specific trusses. The analysis is carried out for bars with stiffening, linear or softening behavior. The combination of the effects of geometrical non-linearities, rheological non-linearities and anisotropy results in particularly rich behaviors of the network.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.