粗糙核奇异积分的跳跃不等式和变分不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
Yanping Chen, Liu Yang, Meng Qu
{"title":"粗糙核奇异积分的跳跃不等式和变分不等式","authors":"Yanping Chen,&nbsp;Liu Yang,&nbsp;Meng Qu","doi":"10.1007/s10114-025-3462-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the jump and variational inequalities of truncated singular integral operator with rough kernel</p><div><div><span>$$T_{\\Omega,\\beta,\\varepsilon}f(x)=\\int_{\\mid y\\mid&gt;\\varepsilon}{\\Omega(y)\\over \\mid y\\mid ^{n-\\beta}}f(x-y)dy,$$</span></div></div><p>where the kernel <span>\\(\\Omega \\in (L(\\log^{+}L)^{2})^{n \\over{n-\\beta}}(\\mathbb{S}^{n-1})\\)</span> satisfies the vanishing condition and the homogeneous condition of degree 0. This kind of singular integral appears in the approximation of the surface quasi-geostrophic (SQG) equation from the generalized SQG equation. We establish the (<i>L</i><sup><i>p</i></sup>, <i>L</i><sup><i>q</i></sup>) estimate of the jump and variational inequalities of the families {<i>T</i><sub><i>Ω,β,ε</i></sub>}<sub><i>ε</i>&gt;0</sub> for <span>\\({1\\over q}={1\\over p}-{\\beta\\over n}\\)</span> and 0 &lt; <i>β</i> &lt; 1. Moreover, one can get the <i>L</i><sup><i>p</i></sup> boundedness of the Calderón–Zygmund operator with the same kernel by letting <i>β</i> → 0<sup>+</sup>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"149 - 168"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jump and Variational Inequalities for Singular Integral with Rough Kernel\",\"authors\":\"Yanping Chen,&nbsp;Liu Yang,&nbsp;Meng Qu\",\"doi\":\"10.1007/s10114-025-3462-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the jump and variational inequalities of truncated singular integral operator with rough kernel</p><div><div><span>$$T_{\\\\Omega,\\\\beta,\\\\varepsilon}f(x)=\\\\int_{\\\\mid y\\\\mid&gt;\\\\varepsilon}{\\\\Omega(y)\\\\over \\\\mid y\\\\mid ^{n-\\\\beta}}f(x-y)dy,$$</span></div></div><p>where the kernel <span>\\\\(\\\\Omega \\\\in (L(\\\\log^{+}L)^{2})^{n \\\\over{n-\\\\beta}}(\\\\mathbb{S}^{n-1})\\\\)</span> satisfies the vanishing condition and the homogeneous condition of degree 0. This kind of singular integral appears in the approximation of the surface quasi-geostrophic (SQG) equation from the generalized SQG equation. We establish the (<i>L</i><sup><i>p</i></sup>, <i>L</i><sup><i>q</i></sup>) estimate of the jump and variational inequalities of the families {<i>T</i><sub><i>Ω,β,ε</i></sub>}<sub><i>ε</i>&gt;0</sub> for <span>\\\\({1\\\\over q}={1\\\\over p}-{\\\\beta\\\\over n}\\\\)</span> and 0 &lt; <i>β</i> &lt; 1. Moreover, one can get the <i>L</i><sup><i>p</i></sup> boundedness of the Calderón–Zygmund operator with the same kernel by letting <i>β</i> → 0<sup>+</sup>.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 1\",\"pages\":\"149 - 168\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3462-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3462-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有粗糙核$$T_{\Omega,\beta,\varepsilon}f(x)=\int_{\mid y\mid>\varepsilon}{\Omega(y)\over \mid y\mid ^{n-\beta}}f(x-y)dy,$$的截断奇异积分算子的跳跃不等式和变分不等式,其中核\(\Omega \in (L(\log^{+}L)^{2})^{n \over{n-\beta}}(\mathbb{S}^{n-1})\)满足消失条件和0次齐次条件。这种奇异积分出现在曲面拟地转方程(SQG)由广义SQG方程逼近时。我们建立了{}\({1\over q}={1\over p}-{\beta\over n}\)和0 &lt; TΩ,β,εε&gt;0族跳跃不等式和变分不等式的(Lp, Lq)估计。β &lt;1. 此外,通过令β→0+,可以得到具有相同核的Calderón-Zygmund算子的Lp有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jump and Variational Inequalities for Singular Integral with Rough Kernel

In this paper, we consider the jump and variational inequalities of truncated singular integral operator with rough kernel

$$T_{\Omega,\beta,\varepsilon}f(x)=\int_{\mid y\mid>\varepsilon}{\Omega(y)\over \mid y\mid ^{n-\beta}}f(x-y)dy,$$

where the kernel \(\Omega \in (L(\log^{+}L)^{2})^{n \over{n-\beta}}(\mathbb{S}^{n-1})\) satisfies the vanishing condition and the homogeneous condition of degree 0. This kind of singular integral appears in the approximation of the surface quasi-geostrophic (SQG) equation from the generalized SQG equation. We establish the (Lp, Lq) estimate of the jump and variational inequalities of the families {TΩ,β,ε}ε>0 for \({1\over q}={1\over p}-{\beta\over n}\) and 0 < β < 1. Moreover, one can get the Lp boundedness of the Calderón–Zygmund operator with the same kernel by letting β → 0+.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信