Dorothee D. Haroske, Zhen Liu, Susana D. Moura, Leszek Skrzypczak
{"title":"广义Morrey平滑空间的嵌入","authors":"Dorothee D. Haroske, Zhen Liu, Susana D. Moura, Leszek Skrzypczak","doi":"10.1007/s10114-025-3553-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study embeddings between generalised Triebel–Lizorkin–Morrey spaces <span>\\(\\cal{E}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span> and within the scales of further generalised Morrey smoothness spaces like <span>\\(\\cal{N}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span>, <i>B</i><span>\n <sup><i>s,φ</i></sup><sub><i>p,q</i></sub>\n \n </span>(ℝ<sup><i>d</i></sup>) and <i>F</i><span>\n <sup><i>s,φ</i></sup><sub><i>p,q</i></sub>\n \n </span>(ℝ<sup><i>d</i></sup>). The latter have been investigated in a recent paper by the first two authors (2023), while the embeddings of the scale <span>\\(\\cal{N}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span> were mainly obtained in a paper of the first and last two authors (2022). Now we concentrate on the characterisation of the spaces <span>\\(\\cal{E}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span>. Our approach requires a wavelet characterisation of those spaces which we establish for the system of Daubechies’ wavelets. Then we prove necessary and sufficient conditions for the embedding <span>\\(\\cal{E}_{\\varphi_{1},p_{1},q_{1}}^{s_{1}}(\\mathbb{R}^{d})\\hookrightarrow\\cal{E}_{\\varphi_{2},p_{2},q_{2}}^{s_{2}}(\\mathbb{R}^{d})\\)</span>. We can also provide some almost final answer to the question when <span>\\(\\cal{E}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span> is embedded into <i>C</i>(ℝ<sup><i>d</i></sup>), complementing our recent findings in case of <span>\\(\\cal{N}_{\\varphi,p,q}^{s}(\\mathbb{R}^{d})\\)</span>.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"413 - 456"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embeddings of Generalised Morrey Smoothness Spaces\",\"authors\":\"Dorothee D. Haroske, Zhen Liu, Susana D. Moura, Leszek Skrzypczak\",\"doi\":\"10.1007/s10114-025-3553-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study embeddings between generalised Triebel–Lizorkin–Morrey spaces <span>\\\\(\\\\cal{E}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span> and within the scales of further generalised Morrey smoothness spaces like <span>\\\\(\\\\cal{N}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span>, <i>B</i><span>\\n <sup><i>s,φ</i></sup><sub><i>p,q</i></sub>\\n \\n </span>(ℝ<sup><i>d</i></sup>) and <i>F</i><span>\\n <sup><i>s,φ</i></sup><sub><i>p,q</i></sub>\\n \\n </span>(ℝ<sup><i>d</i></sup>). The latter have been investigated in a recent paper by the first two authors (2023), while the embeddings of the scale <span>\\\\(\\\\cal{N}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span> were mainly obtained in a paper of the first and last two authors (2022). Now we concentrate on the characterisation of the spaces <span>\\\\(\\\\cal{E}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span>. Our approach requires a wavelet characterisation of those spaces which we establish for the system of Daubechies’ wavelets. Then we prove necessary and sufficient conditions for the embedding <span>\\\\(\\\\cal{E}_{\\\\varphi_{1},p_{1},q_{1}}^{s_{1}}(\\\\mathbb{R}^{d})\\\\hookrightarrow\\\\cal{E}_{\\\\varphi_{2},p_{2},q_{2}}^{s_{2}}(\\\\mathbb{R}^{d})\\\\)</span>. We can also provide some almost final answer to the question when <span>\\\\(\\\\cal{E}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span> is embedded into <i>C</i>(ℝ<sup><i>d</i></sup>), complementing our recent findings in case of <span>\\\\(\\\\cal{N}_{\\\\varphi,p,q}^{s}(\\\\mathbb{R}^{d})\\\\)</span>.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 1\",\"pages\":\"413 - 456\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3553-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3553-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了广义triiebel - lizorkin - Morrey空间\(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\)与广义Morrey平滑空间(如\(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\), B s,φp,q(∈d)和F s,φp,q(∈d))尺度内的嵌入。后者在前两位作者(2023)最近的一篇论文中进行了研究,而尺度\(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\)的嵌入主要在前两位作者(2022)的一篇论文中获得。现在我们专注于空间的特征\(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\)。我们的方法需要对我们为Daubechies小波系统建立的空间进行小波表征。然后证明了嵌入的充分必要条件\(\cal{E}_{\varphi_{1},p_{1},q_{1}}^{s_{1}}(\mathbb{R}^{d})\hookrightarrow\cal{E}_{\varphi_{2},p_{2},q_{2}}^{s_{2}}(\mathbb{R}^{d})\)。当\(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\)嵌入到C(∈d)中时,我们也可以提供一些几乎最终的答案,补充我们最近在\(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\)的发现。
Embeddings of Generalised Morrey Smoothness Spaces
We study embeddings between generalised Triebel–Lizorkin–Morrey spaces \(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\) and within the scales of further generalised Morrey smoothness spaces like \(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\), Bs,φp,q(ℝd) and Fs,φp,q(ℝd). The latter have been investigated in a recent paper by the first two authors (2023), while the embeddings of the scale \(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\) were mainly obtained in a paper of the first and last two authors (2022). Now we concentrate on the characterisation of the spaces \(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\). Our approach requires a wavelet characterisation of those spaces which we establish for the system of Daubechies’ wavelets. Then we prove necessary and sufficient conditions for the embedding \(\cal{E}_{\varphi_{1},p_{1},q_{1}}^{s_{1}}(\mathbb{R}^{d})\hookrightarrow\cal{E}_{\varphi_{2},p_{2},q_{2}}^{s_{2}}(\mathbb{R}^{d})\). We can also provide some almost final answer to the question when \(\cal{E}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\) is embedded into C(ℝd), complementing our recent findings in case of \(\cal{N}_{\varphi,p,q}^{s}(\mathbb{R}^{d})\).
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.