高速磨削:从机构到机床

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Yu-Long Wang, Yan-Bin Zhang, Xin Cui, Xiao-Liang Liang, Run-Ze Li, Ruo-Xin Wang, Shubham Sharma, Ming-Zheng Liu, Teng Gao, Zong-Ming Zhou, Xiao-Ming Wang, Yusuf Suleiman Dambatta, Chang-He Li
{"title":"高速磨削:从机构到机床","authors":"Yu-Long Wang,&nbsp;Yan-Bin Zhang,&nbsp;Xin Cui,&nbsp;Xiao-Liang Liang,&nbsp;Run-Ze Li,&nbsp;Ruo-Xin Wang,&nbsp;Shubham Sharma,&nbsp;Ming-Zheng Liu,&nbsp;Teng Gao,&nbsp;Zong-Ming Zhou,&nbsp;Xiao-Ming Wang,&nbsp;Yusuf Suleiman Dambatta,&nbsp;Chang-He Li","doi":"10.1007/s40436-024-00508-x","DOIUrl":null,"url":null,"abstract":"<div><p>High-speed grinding (HSG) is an advanced technology for precision machining of difficult-to-cut materials in aerospace and other fields, which could solve surface burns, defects and improve surface integrity by increasing the linear speed of the grinding wheel. The advantages of HSG have been preliminarily confirmed and the equipment has been built for experimental research, which can achieve a high grinding speed of more than 300 m/s. However, it is not yet widely used in manufacturing due to the insufficient understanding on material removal mechanism and characteristics of HSG machine tool. To fill this gap, this paper provides a comprehensive overview of HSG technologies. A new direction for adding auxiliary process in HSG is proposed. Firstly, the combined influence law of strain hardening, strain rate intensification, and thermal softening effects on material removal mechanism was revealed, and models of material removal strain rate, grinding force and grinding temperature were summarized. Secondly, the constitutive models under high strain rate boundaries were summarized by considering various properties of material and grinding parameters. Thirdly, the change law of material removal mechanism of HSG was revealed when the thermodynamic boundary conditions changed, by introducing lubrication conditions such as minimum quantity lubrication (MQL), nano-lubricant minimum quantity lubrication (NMQL) and cryogenic air (CA). Finally, the mechanical and dynamic characteristics of the key components of HSG machine tool were summarized, including main body, grinding wheel, spindle and dynamic balance system. Based on the content summarized in this paper, the prospect of HSG is put forward. This study establishes a solid foundation for future developments in the field and points to promising directions for further exploration.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"13 1","pages":"105 - 154"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-024-00508-x.pdf","citationCount":"0","resultStr":"{\"title\":\"High-speed grinding: from mechanism to machine tool\",\"authors\":\"Yu-Long Wang,&nbsp;Yan-Bin Zhang,&nbsp;Xin Cui,&nbsp;Xiao-Liang Liang,&nbsp;Run-Ze Li,&nbsp;Ruo-Xin Wang,&nbsp;Shubham Sharma,&nbsp;Ming-Zheng Liu,&nbsp;Teng Gao,&nbsp;Zong-Ming Zhou,&nbsp;Xiao-Ming Wang,&nbsp;Yusuf Suleiman Dambatta,&nbsp;Chang-He Li\",\"doi\":\"10.1007/s40436-024-00508-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-speed grinding (HSG) is an advanced technology for precision machining of difficult-to-cut materials in aerospace and other fields, which could solve surface burns, defects and improve surface integrity by increasing the linear speed of the grinding wheel. The advantages of HSG have been preliminarily confirmed and the equipment has been built for experimental research, which can achieve a high grinding speed of more than 300 m/s. However, it is not yet widely used in manufacturing due to the insufficient understanding on material removal mechanism and characteristics of HSG machine tool. To fill this gap, this paper provides a comprehensive overview of HSG technologies. A new direction for adding auxiliary process in HSG is proposed. Firstly, the combined influence law of strain hardening, strain rate intensification, and thermal softening effects on material removal mechanism was revealed, and models of material removal strain rate, grinding force and grinding temperature were summarized. Secondly, the constitutive models under high strain rate boundaries were summarized by considering various properties of material and grinding parameters. Thirdly, the change law of material removal mechanism of HSG was revealed when the thermodynamic boundary conditions changed, by introducing lubrication conditions such as minimum quantity lubrication (MQL), nano-lubricant minimum quantity lubrication (NMQL) and cryogenic air (CA). Finally, the mechanical and dynamic characteristics of the key components of HSG machine tool were summarized, including main body, grinding wheel, spindle and dynamic balance system. Based on the content summarized in this paper, the prospect of HSG is put forward. This study establishes a solid foundation for future developments in the field and points to promising directions for further exploration.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"13 1\",\"pages\":\"105 - 154\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40436-024-00508-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00508-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00508-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

高速磨削(HSG)是航空航天等领域对难切削材料进行精密加工的一项先进技术,它通过提高砂轮的线速度来解决表面烧伤、缺陷和提高表面完整性。初步确认了HSG的优势,并建成了实验研究设备,可实现300 m/s以上的高磨削速度。然而,由于对HSG机床材料去除机理和特点的认识不足,目前尚未在制造业中得到广泛应用。为了填补这一空白,本文对HSG技术进行了全面的概述。提出了HSG中添加辅助工艺的新方向。首先,揭示了应变硬化、应变速率强化和热软化效应对材料去除机理的综合影响规律,总结了材料去除应变速率、磨削力和磨削温度的模型;其次,综合考虑材料的各种性能和磨削参数,总结了高应变率边界下的本构模型;再次,通过引入最小量润滑(MQL)、纳米润滑油最小量润滑(NMQL)和低温空气(CA)等润滑条件,揭示了HSG材料去除机理随热力学边界条件变化的变化规律。最后,总结了HSG机床关键部件的力学特性和动态特性,包括机床主体、砂轮、主轴和动平衡系统。在总结本文内容的基础上,展望了HSG的发展前景。本研究为该领域的未来发展奠定了坚实的基础,并指出了进一步探索的有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-speed grinding: from mechanism to machine tool

High-speed grinding (HSG) is an advanced technology for precision machining of difficult-to-cut materials in aerospace and other fields, which could solve surface burns, defects and improve surface integrity by increasing the linear speed of the grinding wheel. The advantages of HSG have been preliminarily confirmed and the equipment has been built for experimental research, which can achieve a high grinding speed of more than 300 m/s. However, it is not yet widely used in manufacturing due to the insufficient understanding on material removal mechanism and characteristics of HSG machine tool. To fill this gap, this paper provides a comprehensive overview of HSG technologies. A new direction for adding auxiliary process in HSG is proposed. Firstly, the combined influence law of strain hardening, strain rate intensification, and thermal softening effects on material removal mechanism was revealed, and models of material removal strain rate, grinding force and grinding temperature were summarized. Secondly, the constitutive models under high strain rate boundaries were summarized by considering various properties of material and grinding parameters. Thirdly, the change law of material removal mechanism of HSG was revealed when the thermodynamic boundary conditions changed, by introducing lubrication conditions such as minimum quantity lubrication (MQL), nano-lubricant minimum quantity lubrication (NMQL) and cryogenic air (CA). Finally, the mechanical and dynamic characteristics of the key components of HSG machine tool were summarized, including main body, grinding wheel, spindle and dynamic balance system. Based on the content summarized in this paper, the prospect of HSG is put forward. This study establishes a solid foundation for future developments in the field and points to promising directions for further exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信