Weidong Lei, Liu Yang, Pengyu Yan, Chengbin Chu, Jie Yang
{"title":"共享制造中本地订单和云订单的生产协调:一种双目标预调度方法","authors":"Weidong Lei, Liu Yang, Pengyu Yan, Chengbin Chu, Jie Yang","doi":"10.1007/s10479-024-06380-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a bi-objective solution approach to address the production scheduling challenge encountered by manufacturers in a shared manufacturing environment. In such scenarios, manufacturers are required to manage orders received through a cloud platform (referred to as cloud orders) while simultaneously fulfilling orders from their long-term and regular clients (local orders). The problem is to efficiently coordinate the production of both types of orders within shared manufacturing facilities. We formulate the problem into a bi-objective mixed integer programming model aimed at simultaneously minimizing the delivery time of cloud orders and mitigating the disruptions to local order production caused by cloud orders. This solution approach comprises three key components: computation of cloud orders’ starting times, construction of available time intervals of manufacturing facilities, and a bi-objective heuristic. This heuristic combines an enhanced hybrid discrete differential evolution with a modified forward–backward earliest starting time algorithm. We introduce an advanced population initialization technique, a novel individual update strategy, and an adaptive local search mechanism based on Pareto-dominance principles to improve the search capabilities of the algorithm towards discovering Pareto non-dominated solutions. Computational results show that the proposed approach outperforms the existing algorithm in most test instances in terms of five common metrics. Insights are discussed, highlighting the practical implications and potential benefits of the proposed approach for shared manufacturing scheduling.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"345 1","pages":"207 - 245"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-024-06380-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Production coordination of local and cloud orders in shared manufacturing: a bi-objective pre-scheduling approach\",\"authors\":\"Weidong Lei, Liu Yang, Pengyu Yan, Chengbin Chu, Jie Yang\",\"doi\":\"10.1007/s10479-024-06380-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a bi-objective solution approach to address the production scheduling challenge encountered by manufacturers in a shared manufacturing environment. In such scenarios, manufacturers are required to manage orders received through a cloud platform (referred to as cloud orders) while simultaneously fulfilling orders from their long-term and regular clients (local orders). The problem is to efficiently coordinate the production of both types of orders within shared manufacturing facilities. We formulate the problem into a bi-objective mixed integer programming model aimed at simultaneously minimizing the delivery time of cloud orders and mitigating the disruptions to local order production caused by cloud orders. This solution approach comprises three key components: computation of cloud orders’ starting times, construction of available time intervals of manufacturing facilities, and a bi-objective heuristic. This heuristic combines an enhanced hybrid discrete differential evolution with a modified forward–backward earliest starting time algorithm. We introduce an advanced population initialization technique, a novel individual update strategy, and an adaptive local search mechanism based on Pareto-dominance principles to improve the search capabilities of the algorithm towards discovering Pareto non-dominated solutions. Computational results show that the proposed approach outperforms the existing algorithm in most test instances in terms of five common metrics. Insights are discussed, highlighting the practical implications and potential benefits of the proposed approach for shared manufacturing scheduling.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"345 1\",\"pages\":\"207 - 245\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-024-06380-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-024-06380-z\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06380-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Production coordination of local and cloud orders in shared manufacturing: a bi-objective pre-scheduling approach
This paper presents a bi-objective solution approach to address the production scheduling challenge encountered by manufacturers in a shared manufacturing environment. In such scenarios, manufacturers are required to manage orders received through a cloud platform (referred to as cloud orders) while simultaneously fulfilling orders from their long-term and regular clients (local orders). The problem is to efficiently coordinate the production of both types of orders within shared manufacturing facilities. We formulate the problem into a bi-objective mixed integer programming model aimed at simultaneously minimizing the delivery time of cloud orders and mitigating the disruptions to local order production caused by cloud orders. This solution approach comprises three key components: computation of cloud orders’ starting times, construction of available time intervals of manufacturing facilities, and a bi-objective heuristic. This heuristic combines an enhanced hybrid discrete differential evolution with a modified forward–backward earliest starting time algorithm. We introduce an advanced population initialization technique, a novel individual update strategy, and an adaptive local search mechanism based on Pareto-dominance principles to improve the search capabilities of the algorithm towards discovering Pareto non-dominated solutions. Computational results show that the proposed approach outperforms the existing algorithm in most test instances in terms of five common metrics. Insights are discussed, highlighting the practical implications and potential benefits of the proposed approach for shared manufacturing scheduling.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.