保持固定子集在某个固定向量处的局部谱中的线性映射

IF 0.5 4区 数学 Q3 MATHEMATICS
Constantin Costara
{"title":"保持固定子集在某个固定向量处的局部谱中的线性映射","authors":"Constantin Costara","doi":"10.1007/s00013-024-02078-7","DOIUrl":null,"url":null,"abstract":"<div><p>For a natural number <span>\\(n \\ge 2\\)</span>, denote by <span>\\(\\mathcal {M}_{n}\\)</span> the space of all <span>\\(n\\times n\\)</span> matrices over the complex field <span>\\(\\mathbb {C}\\)</span>. Let <span>\\(x_0 \\in \\mathbb {C}^{n}\\)</span> be a fixed nonzero vector, and fix also two nonempty subsets <span>\\(K_1, K_2 \\subseteq \\mathbb {C}\\)</span>, each having at most <i>n</i> distinct elements. Under the assumption that <span>\\(|K_1| \\le |K_2|\\)</span>, we characterize linear bijective maps <span>\\(\\varphi \\)</span> on <span>\\(\\mathcal {M}_{n}\\)</span> having the property that, for each matrix <i>T</i>, we have that <span>\\(K_2\\)</span> is a subset of the local spectrum of <span>\\(\\varphi (T)\\)</span> at <span>\\(x_0 \\)</span> whenever <span>\\(K_1 \\)</span> is a subset of the local spectrum of <i>T</i> at <span>\\(x_0\\)</span>. As a corollary, we also characterize linear maps <span>\\(\\varphi \\)</span> on <span>\\(\\mathcal {M} _{n}\\)</span> having the property that, for each matrix <i>T</i>, we have that <span>\\(K_1\\)</span> is a subset of the local spectrum of <i>T</i> at <span>\\(x_0\\)</span> if and only if <span>\\(K_2\\)</span> is a subset of the local spectrum of <span>\\(\\varphi (T)\\)</span> at <span>\\(x_0\\)</span>, without the bijectivity assumption on the map <span>\\(\\varphi \\)</span> and with no assumption made regarding the number of elements of <span>\\(K_1\\)</span> and <span>\\(K_2\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 2","pages":"165 - 176"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02078-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear maps preserving the inclusion of fixed subsets into the local spectrum at some fixed vector\",\"authors\":\"Constantin Costara\",\"doi\":\"10.1007/s00013-024-02078-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a natural number <span>\\\\(n \\\\ge 2\\\\)</span>, denote by <span>\\\\(\\\\mathcal {M}_{n}\\\\)</span> the space of all <span>\\\\(n\\\\times n\\\\)</span> matrices over the complex field <span>\\\\(\\\\mathbb {C}\\\\)</span>. Let <span>\\\\(x_0 \\\\in \\\\mathbb {C}^{n}\\\\)</span> be a fixed nonzero vector, and fix also two nonempty subsets <span>\\\\(K_1, K_2 \\\\subseteq \\\\mathbb {C}\\\\)</span>, each having at most <i>n</i> distinct elements. Under the assumption that <span>\\\\(|K_1| \\\\le |K_2|\\\\)</span>, we characterize linear bijective maps <span>\\\\(\\\\varphi \\\\)</span> on <span>\\\\(\\\\mathcal {M}_{n}\\\\)</span> having the property that, for each matrix <i>T</i>, we have that <span>\\\\(K_2\\\\)</span> is a subset of the local spectrum of <span>\\\\(\\\\varphi (T)\\\\)</span> at <span>\\\\(x_0 \\\\)</span> whenever <span>\\\\(K_1 \\\\)</span> is a subset of the local spectrum of <i>T</i> at <span>\\\\(x_0\\\\)</span>. As a corollary, we also characterize linear maps <span>\\\\(\\\\varphi \\\\)</span> on <span>\\\\(\\\\mathcal {M} _{n}\\\\)</span> having the property that, for each matrix <i>T</i>, we have that <span>\\\\(K_1\\\\)</span> is a subset of the local spectrum of <i>T</i> at <span>\\\\(x_0\\\\)</span> if and only if <span>\\\\(K_2\\\\)</span> is a subset of the local spectrum of <span>\\\\(\\\\varphi (T)\\\\)</span> at <span>\\\\(x_0\\\\)</span>, without the bijectivity assumption on the map <span>\\\\(\\\\varphi \\\\)</span> and with no assumption made regarding the number of elements of <span>\\\\(K_1\\\\)</span> and <span>\\\\(K_2\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 2\",\"pages\":\"165 - 176\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02078-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02078-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02078-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于自然数\(n \ge 2\),用\(\mathcal {M}_{n}\)表示复域\(\mathbb {C}\)上所有\(n\times n\)矩阵的空间。设\(x_0 \in \mathbb {C}^{n}\)为一个固定的非零向量,并固定两个非空子集\(K_1, K_2 \subseteq \mathbb {C}\),每个子集最多有n个不同的元素。在\(|K_1| \le |K_2|\)的假设下,我们描述了\(\mathcal {M}_{n}\)上的线性双射映射\(\varphi \)具有这样的性质,对于每个矩阵T,我们有\(K_2\)是\(\varphi (T)\)在\(x_0 \)的局部谱的一个子集每当\(K_1 \)是T在\(x_0\)的局部谱的一个子集。作为推论,我们还描述了\(\mathcal {M} _{n}\)上的线性映射\(\varphi \),它具有这样的性质,对于每个矩阵T,我们有\(K_1\)是T在\(x_0\)的局部谱的一个子集当且仅当\(K_2\)是\(\varphi (T)\)在\(x_0\)的局部谱的一个子集,没有对地图\(\varphi \)的双射性假设,也没有对\(K_1\)和\(K_2\)的元素数量做出假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear maps preserving the inclusion of fixed subsets into the local spectrum at some fixed vector

For a natural number \(n \ge 2\), denote by \(\mathcal {M}_{n}\) the space of all \(n\times n\) matrices over the complex field \(\mathbb {C}\). Let \(x_0 \in \mathbb {C}^{n}\) be a fixed nonzero vector, and fix also two nonempty subsets \(K_1, K_2 \subseteq \mathbb {C}\), each having at most n distinct elements. Under the assumption that \(|K_1| \le |K_2|\), we characterize linear bijective maps \(\varphi \) on \(\mathcal {M}_{n}\) having the property that, for each matrix T, we have that \(K_2\) is a subset of the local spectrum of \(\varphi (T)\) at \(x_0 \) whenever \(K_1 \) is a subset of the local spectrum of T at \(x_0\). As a corollary, we also characterize linear maps \(\varphi \) on \(\mathcal {M} _{n}\) having the property that, for each matrix T, we have that \(K_1\) is a subset of the local spectrum of T at \(x_0\) if and only if \(K_2\) is a subset of the local spectrum of \(\varphi (T)\) at \(x_0\), without the bijectivity assumption on the map \(\varphi \) and with no assumption made regarding the number of elements of \(K_1\) and \(K_2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信