{"title":"(非齐次)归一化p(·)-拉普拉斯方程的定量二阶Sobolev正则性","authors":"Yuqing Wang, Yuan Zhou","doi":"10.1007/s10114-025-3356-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let Ω be a domain of ℝ<sup><i>n</i></sup> with <i>n</i> ≥ 2 and <i>p</i>(·) be a local Lipschitz funcion in Ω with 1 < <i>p</i>(<i>x</i>) < ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized <i>p</i>(·)-Laplace equation −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> = 0 in Ω as well as the corresponding inhomogeneous equation −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> =<i>f</i> in Ω with <i>f</i> ∈ <i>C</i><sup>0</sup>(Ω). In particular, given any viscosity solution <i>u</i> to −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> = 0 in Ω, we prove the following:\n</p><ol>\n <li>\n <span>(i)</span>\n \n <p>in dimension <i>n</i> = 2, for any subdomain <i>U</i> ⋐ Ω and any <i>β</i> ≥ 0, one has ∣<i>Du</i>∣<sup><i>β</i></sup><i>Du</i> ∈ <i>L</i><span>\n <sup>2+<i>δ</i></sup><sub>loc</sub>\n \n </span> (<i>U</i>) with a quantitative upper bound, and moreover, the map <span>\\((x_{1},x_{2})\\rightarrow\\vert Du\\vert^{\\beta}(u_{x_{1}},-u_{x_{2}})\\)</span> is quasiregular in <i>U</i> in the sense that </p><div><div><span>$$\\vert D[\\vert Du\\vert^{\\beta}\\;Du]\\vert^{2}\\leq-C\\;\\text{det}\\;D[\\vert Du\\vert^{\\beta}\\;Du]\\;\\;\\;\\;\\;\\text{a.e.}\\;\\text{in}\\;U.$$</span></div></div>\n \n </li>\n <li>\n <span>(ii)</span>\n \n <p>in dimension <i>n</i> ≥ 3, for any subdomain <i>U</i> ⋐ Ω with inf<sub><i>U</i></sub> <i>p</i>(<i>x</i>) > 1 and <span>\\(\\text{sup}_{U}\\;p(x)<3+{2\\over{n-2}}\\)</span>, one has <i>D</i><sup>2</sup><i>u</i> ∈ <i>L</i><span>\n <sup>2+<i>δ</i></sup><sub>loc</sub>\n \n </span> (<i>U</i>) with a quantitative upper bound, and also with a pointwise upper bound </p><div><div><span>$$\\vert D^{2}u\\vert^{2}\\leq-C\\sum_{1\\leq i<j\\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\\;\\;\\;\\;\\;\\text{a.e}\\;\\text{in}\\;U.$$</span></div></div>\n \n </li>\n </ol><p>Here constants <i>δ</i> > 0 and <i>C</i> ≥ 1 are independent of <i>u</i>. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. <i>Int. Math. Res. Not. IMRN</i>, <b>10</b>, 1940–1965 (2010)] when <i>n</i> = 2 and <i>β</i> = 0.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"99 - 121"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative Second Order Sobolev Regularity for (inhomogeneous) Normalized p(·)-Laplace Equations\",\"authors\":\"Yuqing Wang, Yuan Zhou\",\"doi\":\"10.1007/s10114-025-3356-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Ω be a domain of ℝ<sup><i>n</i></sup> with <i>n</i> ≥ 2 and <i>p</i>(·) be a local Lipschitz funcion in Ω with 1 < <i>p</i>(<i>x</i>) < ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized <i>p</i>(·)-Laplace equation −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> = 0 in Ω as well as the corresponding inhomogeneous equation −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> =<i>f</i> in Ω with <i>f</i> ∈ <i>C</i><sup>0</sup>(Ω). In particular, given any viscosity solution <i>u</i> to −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> = 0 in Ω, we prove the following:\\n</p><ol>\\n <li>\\n <span>(i)</span>\\n \\n <p>in dimension <i>n</i> = 2, for any subdomain <i>U</i> ⋐ Ω and any <i>β</i> ≥ 0, one has ∣<i>Du</i>∣<sup><i>β</i></sup><i>Du</i> ∈ <i>L</i><span>\\n <sup>2+<i>δ</i></sup><sub>loc</sub>\\n \\n </span> (<i>U</i>) with a quantitative upper bound, and moreover, the map <span>\\\\((x_{1},x_{2})\\\\rightarrow\\\\vert Du\\\\vert^{\\\\beta}(u_{x_{1}},-u_{x_{2}})\\\\)</span> is quasiregular in <i>U</i> in the sense that </p><div><div><span>$$\\\\vert D[\\\\vert Du\\\\vert^{\\\\beta}\\\\;Du]\\\\vert^{2}\\\\leq-C\\\\;\\\\text{det}\\\\;D[\\\\vert Du\\\\vert^{\\\\beta}\\\\;Du]\\\\;\\\\;\\\\;\\\\;\\\\;\\\\text{a.e.}\\\\;\\\\text{in}\\\\;U.$$</span></div></div>\\n \\n </li>\\n <li>\\n <span>(ii)</span>\\n \\n <p>in dimension <i>n</i> ≥ 3, for any subdomain <i>U</i> ⋐ Ω with inf<sub><i>U</i></sub> <i>p</i>(<i>x</i>) > 1 and <span>\\\\(\\\\text{sup}_{U}\\\\;p(x)<3+{2\\\\over{n-2}}\\\\)</span>, one has <i>D</i><sup>2</sup><i>u</i> ∈ <i>L</i><span>\\n <sup>2+<i>δ</i></sup><sub>loc</sub>\\n \\n </span> (<i>U</i>) with a quantitative upper bound, and also with a pointwise upper bound </p><div><div><span>$$\\\\vert D^{2}u\\\\vert^{2}\\\\leq-C\\\\sum_{1\\\\leq i<j\\\\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\\\\;\\\\;\\\\;\\\\;\\\\;\\\\text{a.e}\\\\;\\\\text{in}\\\\;U.$$</span></div></div>\\n \\n </li>\\n </ol><p>Here constants <i>δ</i> > 0 and <i>C</i> ≥ 1 are independent of <i>u</i>. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. <i>Int. Math. Res. Not. IMRN</i>, <b>10</b>, 1940–1965 (2010)] when <i>n</i> = 2 and <i>β</i> = 0.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 1\",\"pages\":\"99 - 121\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3356-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3356-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Quantitative Second Order Sobolev Regularity for (inhomogeneous) Normalized p(·)-Laplace Equations
Let Ω be a domain of ℝn with n ≥ 2 and p(·) be a local Lipschitz funcion in Ω with 1 < p(x) < ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized p(·)-Laplace equation −ΔNp(·)u = 0 in Ω as well as the corresponding inhomogeneous equation −ΔNp(·)u =f in Ω with f ∈ C0(Ω). In particular, given any viscosity solution u to −ΔNp(·)u = 0 in Ω, we prove the following:
(i)
in dimension n = 2, for any subdomain U ⋐ Ω and any β ≥ 0, one has ∣Du∣βDu ∈ L2+δloc (U) with a quantitative upper bound, and moreover, the map \((x_{1},x_{2})\rightarrow\vert Du\vert^{\beta}(u_{x_{1}},-u_{x_{2}})\) is quasiregular in U in the sense that
in dimension n ≥ 3, for any subdomain U ⋐ Ω with infUp(x) > 1 and \(\text{sup}_{U}\;p(x)<3+{2\over{n-2}}\), one has D2u ∈ L2+δloc (U) with a quantitative upper bound, and also with a pointwise upper bound
Here constants δ > 0 and C ≥ 1 are independent of u. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. Int. Math. Res. Not. IMRN, 10, 1940–1965 (2010)] when n = 2 and β = 0.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.