(非齐次)归一化p(·)-拉普拉斯方程的定量二阶Sobolev正则性

IF 0.8 3区 数学 Q2 MATHEMATICS
Yuqing Wang, Yuan Zhou
{"title":"(非齐次)归一化p(·)-拉普拉斯方程的定量二阶Sobolev正则性","authors":"Yuqing Wang,&nbsp;Yuan Zhou","doi":"10.1007/s10114-025-3356-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let Ω be a domain of ℝ<sup><i>n</i></sup> with <i>n</i> ≥ 2 and <i>p</i>(·) be a local Lipschitz funcion in Ω with 1 &lt; <i>p</i>(<i>x</i>) &lt; ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized <i>p</i>(·)-Laplace equation −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> = 0 in Ω as well as the corresponding inhomogeneous equation −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> =<i>f</i> in Ω with <i>f</i> ∈ <i>C</i><sup>0</sup>(Ω). In particular, given any viscosity solution <i>u</i> to −Δ<span>\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\n \n </span><i>u</i> = 0 in Ω, we prove the following:\n</p><ol>\n <li>\n <span>(i)</span>\n \n <p>in dimension <i>n</i> = 2, for any subdomain <i>U</i> ⋐ Ω and any <i>β</i> ≥ 0, one has ∣<i>Du</i>∣<sup><i>β</i></sup><i>Du</i> ∈ <i>L</i><span>\n <sup>2+<i>δ</i></sup><sub>loc</sub>\n \n </span> (<i>U</i>) with a quantitative upper bound, and moreover, the map <span>\\((x_{1},x_{2})\\rightarrow\\vert Du\\vert^{\\beta}(u_{x_{1}},-u_{x_{2}})\\)</span> is quasiregular in <i>U</i> in the sense that </p><div><div><span>$$\\vert D[\\vert Du\\vert^{\\beta}\\;Du]\\vert^{2}\\leq-C\\;\\text{det}\\;D[\\vert Du\\vert^{\\beta}\\;Du]\\;\\;\\;\\;\\;\\text{a.e.}\\;\\text{in}\\;U.$$</span></div></div>\n \n </li>\n <li>\n <span>(ii)</span>\n \n <p>in dimension <i>n</i> ≥ 3, for any subdomain <i>U</i> ⋐ Ω with inf<sub><i>U</i></sub> <i>p</i>(<i>x</i>) &gt; 1 and <span>\\(\\text{sup}_{U}\\;p(x)&lt;3+{2\\over{n-2}}\\)</span>, one has <i>D</i><sup>2</sup><i>u</i> ∈ <i>L</i><span>\n <sup>2+<i>δ</i></sup><sub>loc</sub>\n \n </span> (<i>U</i>) with a quantitative upper bound, and also with a pointwise upper bound </p><div><div><span>$$\\vert D^{2}u\\vert^{2}\\leq-C\\sum_{1\\leq i&lt;j\\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\\;\\;\\;\\;\\;\\text{a.e}\\;\\text{in}\\;U.$$</span></div></div>\n \n </li>\n </ol><p>Here constants <i>δ</i> &gt; 0 and <i>C</i> ≥ 1 are independent of <i>u</i>. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. <i>Int. Math. Res. Not. IMRN</i>, <b>10</b>, 1940–1965 (2010)] when <i>n</i> = 2 and <i>β</i> = 0.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"99 - 121"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative Second Order Sobolev Regularity for (inhomogeneous) Normalized p(·)-Laplace Equations\",\"authors\":\"Yuqing Wang,&nbsp;Yuan Zhou\",\"doi\":\"10.1007/s10114-025-3356-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let Ω be a domain of ℝ<sup><i>n</i></sup> with <i>n</i> ≥ 2 and <i>p</i>(·) be a local Lipschitz funcion in Ω with 1 &lt; <i>p</i>(<i>x</i>) &lt; ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized <i>p</i>(·)-Laplace equation −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> = 0 in Ω as well as the corresponding inhomogeneous equation −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> =<i>f</i> in Ω with <i>f</i> ∈ <i>C</i><sup>0</sup>(Ω). In particular, given any viscosity solution <i>u</i> to −Δ<span>\\n <sup><i>N</i></sup><sub><i>p</i>(·)</sub>\\n \\n </span><i>u</i> = 0 in Ω, we prove the following:\\n</p><ol>\\n <li>\\n <span>(i)</span>\\n \\n <p>in dimension <i>n</i> = 2, for any subdomain <i>U</i> ⋐ Ω and any <i>β</i> ≥ 0, one has ∣<i>Du</i>∣<sup><i>β</i></sup><i>Du</i> ∈ <i>L</i><span>\\n <sup>2+<i>δ</i></sup><sub>loc</sub>\\n \\n </span> (<i>U</i>) with a quantitative upper bound, and moreover, the map <span>\\\\((x_{1},x_{2})\\\\rightarrow\\\\vert Du\\\\vert^{\\\\beta}(u_{x_{1}},-u_{x_{2}})\\\\)</span> is quasiregular in <i>U</i> in the sense that </p><div><div><span>$$\\\\vert D[\\\\vert Du\\\\vert^{\\\\beta}\\\\;Du]\\\\vert^{2}\\\\leq-C\\\\;\\\\text{det}\\\\;D[\\\\vert Du\\\\vert^{\\\\beta}\\\\;Du]\\\\;\\\\;\\\\;\\\\;\\\\;\\\\text{a.e.}\\\\;\\\\text{in}\\\\;U.$$</span></div></div>\\n \\n </li>\\n <li>\\n <span>(ii)</span>\\n \\n <p>in dimension <i>n</i> ≥ 3, for any subdomain <i>U</i> ⋐ Ω with inf<sub><i>U</i></sub> <i>p</i>(<i>x</i>) &gt; 1 and <span>\\\\(\\\\text{sup}_{U}\\\\;p(x)&lt;3+{2\\\\over{n-2}}\\\\)</span>, one has <i>D</i><sup>2</sup><i>u</i> ∈ <i>L</i><span>\\n <sup>2+<i>δ</i></sup><sub>loc</sub>\\n \\n </span> (<i>U</i>) with a quantitative upper bound, and also with a pointwise upper bound </p><div><div><span>$$\\\\vert D^{2}u\\\\vert^{2}\\\\leq-C\\\\sum_{1\\\\leq i&lt;j\\\\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\\\\;\\\\;\\\\;\\\\;\\\\;\\\\text{a.e}\\\\;\\\\text{in}\\\\;U.$$</span></div></div>\\n \\n </li>\\n </ol><p>Here constants <i>δ</i> &gt; 0 and <i>C</i> ≥ 1 are independent of <i>u</i>. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. <i>Int. Math. Res. Not. IMRN</i>, <b>10</b>, 1940–1965 (2010)] when <i>n</i> = 2 and <i>β</i> = 0.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 1\",\"pages\":\"99 - 121\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3356-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3356-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Ω是一个n≥2的定义域,p(·)是Ω中具有1 &lt的局部Lipschitz函数;P (x) &lt;∞在Ω。对于归一化的p(·)-拉普拉斯方程- Δ Np(·)u = 0(Ω)以及相应的非齐次方程- Δ Np(·)u =f (Ω),我们建立了一个内部定量二阶Sobolev正则性,其中f∈C0(Ω)。特别地,在Ω中给定任意粘度解u至- Δ Np(·)u = 0,我们证明如下:(i)在n = 2维空间中,对于任意子域U⋐Ω和任意β≥0,有一个有定量上界的∣Du∣βDu∈l2 +δloc (U),并且映射\((x_{1},x_{2})\rightarrow\vert Du\vert^{\beta}(u_{x_{1}},-u_{x_{2}})\)在U上是拟正则的,即$$\vert D[\vert Du\vert^{\beta}\;Du]\vert^{2}\leq-C\;\text{det}\;D[\vert Du\vert^{\beta}\;Du]\;\;\;\;\;\text{a.e.}\;\text{in}\;U.$$ (ii)在n≥3维空间中,对于任意子域U⋐Ω,用infU p(x) &gt;1和\(\text{sup}_{U}\;p(x)<3+{2\over{n-2}}\),我们有D2u∈l2 +δloc (U)有定量上界,也有点态上界$$\vert D^{2}u\vert^{2}\leq-C\sum_{1\leq i<j\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\;\;\;\;\;\text{a.e}\;\text{in}\;U.$$这里常数δ &gt;0和C≥1与u无关,推广了Adamowicz-Hästö[有限畸变与非标准生长的PDE映射]的相关结果。Int。数学。答:不是。[j] .中国生物医学工程学报,2010,30(2):481 - 481。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quantitative Second Order Sobolev Regularity for (inhomogeneous) Normalized p(·)-Laplace Equations

Let Ω be a domain of ℝn with n ≥ 2 and p(·) be a local Lipschitz funcion in Ω with 1 < p(x) < ∞ in Ω. We build up an interior quantitative second order Sobolev regularity for the normalized p(·)-Laplace equation −Δ Np(·) u = 0 in Ω as well as the corresponding inhomogeneous equation −Δ Np(·) u =f in Ω with fC0(Ω). In particular, given any viscosity solution u to −Δ Np(·) u = 0 in Ω, we prove the following:

  1. (i)

    in dimension n = 2, for any subdomain U ⋐ Ω and any β ≥ 0, one has ∣DuβDuL 2+δloc (U) with a quantitative upper bound, and moreover, the map \((x_{1},x_{2})\rightarrow\vert Du\vert^{\beta}(u_{x_{1}},-u_{x_{2}})\) is quasiregular in U in the sense that

    $$\vert D[\vert Du\vert^{\beta}\;Du]\vert^{2}\leq-C\;\text{det}\;D[\vert Du\vert^{\beta}\;Du]\;\;\;\;\;\text{a.e.}\;\text{in}\;U.$$
  2. (ii)

    in dimension n ≥ 3, for any subdomain U ⋐ Ω with infU p(x) > 1 and \(\text{sup}_{U}\;p(x)<3+{2\over{n-2}}\), one has D2uL 2+δloc (U) with a quantitative upper bound, and also with a pointwise upper bound

    $$\vert D^{2}u\vert^{2}\leq-C\sum_{1\leq i<j\leq n}[u_{x_{i}x_{j}}u_{x_{j}x_{i}}-u_{x_{i}x_{i}}u_{x_{j}x_{j}}]\;\;\;\;\;\text{a.e}\;\text{in}\;U.$$

Here constants δ > 0 and C ≥ 1 are independent of u. These extend the related results obtaind by Adamowicz–Hästö [Mappings of finite distortion and PDE with nonstandard growth. Int. Math. Res. Not. IMRN, 10, 1940–1965 (2010)] when n = 2 and β = 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信