限制riesz -对数- gagliardo - lipschitz势

IF 0.8 3区 数学 Q2 MATHEMATICS
Xinting Hu, Liguang Liu
{"title":"限制riesz -对数- gagliardo - lipschitz势","authors":"Xinting Hu,&nbsp;Liguang Liu","doi":"10.1007/s10114-025-3458-1","DOIUrl":null,"url":null,"abstract":"<div><p>For <i>s</i> ∈ [0, 1], <i>b</i> ∈ ℝ and <i>p</i> ∈ [1, ∞), let <span>\\(\\dot{B}_{p,\\infty}^{s,b}(\\mathbb{R}^{n})\\)</span> be the logarithmic-Gagliardo–Lipschitz space, which arises as a limiting interpolation space and coincides to the classical Besov space when <i>b</i> = 0 and <i>s</i> ∈ (0, 1). In this paper, the authors study restricting principles of the Riesz potential space <span>\\(\\cal{I}_{\\alpha}(\\dot{B}_{p,\\infty}^{s,b}(\\mathbb{R}^{n}))\\)</span> into certain Radon–Campanato space.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"131 - 148"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricting Riesz–Logarithmic-Gagliardo–Lipschitz Potentials\",\"authors\":\"Xinting Hu,&nbsp;Liguang Liu\",\"doi\":\"10.1007/s10114-025-3458-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <i>s</i> ∈ [0, 1], <i>b</i> ∈ ℝ and <i>p</i> ∈ [1, ∞), let <span>\\\\(\\\\dot{B}_{p,\\\\infty}^{s,b}(\\\\mathbb{R}^{n})\\\\)</span> be the logarithmic-Gagliardo–Lipschitz space, which arises as a limiting interpolation space and coincides to the classical Besov space when <i>b</i> = 0 and <i>s</i> ∈ (0, 1). In this paper, the authors study restricting principles of the Riesz potential space <span>\\\\(\\\\cal{I}_{\\\\alpha}(\\\\dot{B}_{p,\\\\infty}^{s,b}(\\\\mathbb{R}^{n}))\\\\)</span> into certain Radon–Campanato space.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"41 1\",\"pages\":\"131 - 148\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-025-3458-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3458-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于s∈[0,1],b∈∈∈,p∈[1,∞],设\(\dot{B}_{p,\infty}^{s,b}(\mathbb{R}^{n})\)为对数- gagliardo - lipschitz空间,当b = 0, s∈(0,1)时,该空间作为一个极限插值空间出现,与经典Besov空间重合。本文研究了Riesz势空间\(\cal{I}_{\alpha}(\dot{B}_{p,\infty}^{s,b}(\mathbb{R}^{n}))\)在某Radon-Campanato空间中的约束原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricting Riesz–Logarithmic-Gagliardo–Lipschitz Potentials

For s ∈ [0, 1], b ∈ ℝ and p ∈ [1, ∞), let \(\dot{B}_{p,\infty}^{s,b}(\mathbb{R}^{n})\) be the logarithmic-Gagliardo–Lipschitz space, which arises as a limiting interpolation space and coincides to the classical Besov space when b = 0 and s ∈ (0, 1). In this paper, the authors study restricting principles of the Riesz potential space \(\cal{I}_{\alpha}(\dot{B}_{p,\infty}^{s,b}(\mathbb{R}^{n}))\) into certain Radon–Campanato space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信