基于混沌对抗的工程问题植物传播算法

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alfe Suny, Maimuna Akter Liza, Md. Fahim, Ahmed Wasif Reza, Nazmul Siddique
{"title":"基于混沌对抗的工程问题植物传播算法","authors":"Alfe Suny,&nbsp;Maimuna Akter Liza,&nbsp;Md. Fahim,&nbsp;Ahmed Wasif Reza,&nbsp;Nazmul Siddique","doi":"10.1007/s10489-025-06320-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Plant Propagation Algorithm (PPA), often exemplified by the Strawberry Algorithm, has demonstrated its effectiveness in solving lower-dimensional optimization problems as a neighborhood search algorithm. While multiple enhancements have been introduced to boost its performance, PPA remains a population-based metaheuristic algorithm. A key element of PPA involves balancing exploration and exploitation, akin to a strawberry plant seeking the best survival strategy. This paper delves into the integration of chaotic numbers and opposition theory in PPA, focusing on how these additions impact its efficiency. The primary research questions revolve around enhancing PPA’s performance and reducing its search space to expedite the algorithm, ultimately leading to faster overall results. Experiments were carried out on three challenging engineering problems: the Pressure Vessel Optimization, the Spring Design Optimization, and the Welded Beam Problem, to fully assess the effectiveness of the improved PPA. The effectiveness of the original PPA, the Chaotic Opposition-Based PPA (COPPA), and several other metaheuristic algorithms were examined in each of these problems. In terms of efficiency and solution quality, the findings consistently demonstrate that COPPA performs better than the traditional PPA and other algorithms. The results indicate that using chaotic-based oppositional processes decreases the search space and enhances performance, resulting in faster and more resource-efficient optimization. The investigation reveals that incorporating chaotic-based oppositional PPA yields improved results while conserving resources and accelerating execution.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic opposition-based plant propagation algorithm for engineering problem\",\"authors\":\"Alfe Suny,&nbsp;Maimuna Akter Liza,&nbsp;Md. Fahim,&nbsp;Ahmed Wasif Reza,&nbsp;Nazmul Siddique\",\"doi\":\"10.1007/s10489-025-06320-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Plant Propagation Algorithm (PPA), often exemplified by the Strawberry Algorithm, has demonstrated its effectiveness in solving lower-dimensional optimization problems as a neighborhood search algorithm. While multiple enhancements have been introduced to boost its performance, PPA remains a population-based metaheuristic algorithm. A key element of PPA involves balancing exploration and exploitation, akin to a strawberry plant seeking the best survival strategy. This paper delves into the integration of chaotic numbers and opposition theory in PPA, focusing on how these additions impact its efficiency. The primary research questions revolve around enhancing PPA’s performance and reducing its search space to expedite the algorithm, ultimately leading to faster overall results. Experiments were carried out on three challenging engineering problems: the Pressure Vessel Optimization, the Spring Design Optimization, and the Welded Beam Problem, to fully assess the effectiveness of the improved PPA. The effectiveness of the original PPA, the Chaotic Opposition-Based PPA (COPPA), and several other metaheuristic algorithms were examined in each of these problems. In terms of efficiency and solution quality, the findings consistently demonstrate that COPPA performs better than the traditional PPA and other algorithms. The results indicate that using chaotic-based oppositional processes decreases the search space and enhances performance, resulting in faster and more resource-efficient optimization. The investigation reveals that incorporating chaotic-based oppositional PPA yields improved results while conserving resources and accelerating execution.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06320-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06320-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

植物繁殖算法(PPA)作为一种邻域搜索算法,在解决低维优化问题方面已经证明了它的有效性,草莓算法就是一个很好的例子。虽然已经引入了多种增强功能来提高其性能,但PPA仍然是一种基于人群的元启发式算法。PPA的一个关键要素是平衡探索和开发,类似于草莓植物寻求最佳生存策略。本文深入研究了混沌数和对偶理论在PPA中的整合,重点讨论了这些添加对PPA效率的影响。主要的研究问题围绕着提高PPA的性能和减少其搜索空间来加快算法,最终导致更快的整体结果。针对压力容器优化、弹簧设计优化和焊接梁问题三个具有挑战性的工程问题进行了实验,以充分评估改进PPA的有效性。在每个问题中,对原始PPA、基于混沌对立的PPA (COPPA)和其他几种元启发式算法的有效性进行了检验。在效率和解质量方面,研究结果一致表明COPPA优于传统PPA和其他算法。结果表明,使用基于混沌的对立过程减少了搜索空间,提高了性能,实现了更快、更高效的优化。调查表明,结合基于混沌的对立PPA可以在节省资源和加速执行的同时改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chaotic opposition-based plant propagation algorithm for engineering problem

Chaotic opposition-based plant propagation algorithm for engineering problem

The Plant Propagation Algorithm (PPA), often exemplified by the Strawberry Algorithm, has demonstrated its effectiveness in solving lower-dimensional optimization problems as a neighborhood search algorithm. While multiple enhancements have been introduced to boost its performance, PPA remains a population-based metaheuristic algorithm. A key element of PPA involves balancing exploration and exploitation, akin to a strawberry plant seeking the best survival strategy. This paper delves into the integration of chaotic numbers and opposition theory in PPA, focusing on how these additions impact its efficiency. The primary research questions revolve around enhancing PPA’s performance and reducing its search space to expedite the algorithm, ultimately leading to faster overall results. Experiments were carried out on three challenging engineering problems: the Pressure Vessel Optimization, the Spring Design Optimization, and the Welded Beam Problem, to fully assess the effectiveness of the improved PPA. The effectiveness of the original PPA, the Chaotic Opposition-Based PPA (COPPA), and several other metaheuristic algorithms were examined in each of these problems. In terms of efficiency and solution quality, the findings consistently demonstrate that COPPA performs better than the traditional PPA and other algorithms. The results indicate that using chaotic-based oppositional processes decreases the search space and enhances performance, resulting in faster and more resource-efficient optimization. The investigation reveals that incorporating chaotic-based oppositional PPA yields improved results while conserving resources and accelerating execution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信