无界度量测度空间上Musielak-Orlicz-Morrey空间上的广义Riesz势算子

IF 1.6 3区 数学 Q1 MATHEMATICS
Takao Ohno, Tetsu Shimomura
{"title":"无界度量测度空间上Musielak-Orlicz-Morrey空间上的广义Riesz势算子","authors":"Takao Ohno,&nbsp;Tetsu Shimomura","doi":"10.1007/s13324-025-01020-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we discuss the boundedness of the Hardy–Littlewood maximal operator <span>\\(M_{\\lambda }, \\ \\lambda \\ge 1\\)</span>, and the variable Riesz potential operator <span>\\(I_{\\alpha (\\cdot ),\\tau }, \\ \\tau \\ge 1\\)</span>, on Musielak–Orlicz–Morrey spaces <span>\\(L^{\\Phi ,\\kappa ,\\theta }(X)\\)</span> over unbounded metric measure spaces <i>X</i>. As an important example, we obtain the boundedness of <span>\\(M_{\\lambda }\\)</span> and <span>\\(I_{\\alpha (\\cdot ),\\tau }\\)</span> in the framework of double phase functionals with variable exponents <span>\\(\\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \\ x \\in X, \\ t \\ge 0\\)</span>, where <span>\\(p(x)&lt;q(x)\\)</span> for <span>\\(x\\in X\\)</span>, <span>\\(a(\\cdot )\\)</span> is a non-negative, bounded and Hölder continuous function of order <span>\\(\\theta \\in (0,1]\\)</span>. Our results are new even for the variable exponent Morrey spaces or for the doubling metric measure case in that the underlying spaces need not be bounded.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01020-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Riesz potential operators on Musielak–Orlicz–Morrey spaces over unbounded metric measure spaces\",\"authors\":\"Takao Ohno,&nbsp;Tetsu Shimomura\",\"doi\":\"10.1007/s13324-025-01020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we discuss the boundedness of the Hardy–Littlewood maximal operator <span>\\\\(M_{\\\\lambda }, \\\\ \\\\lambda \\\\ge 1\\\\)</span>, and the variable Riesz potential operator <span>\\\\(I_{\\\\alpha (\\\\cdot ),\\\\tau }, \\\\ \\\\tau \\\\ge 1\\\\)</span>, on Musielak–Orlicz–Morrey spaces <span>\\\\(L^{\\\\Phi ,\\\\kappa ,\\\\theta }(X)\\\\)</span> over unbounded metric measure spaces <i>X</i>. As an important example, we obtain the boundedness of <span>\\\\(M_{\\\\lambda }\\\\)</span> and <span>\\\\(I_{\\\\alpha (\\\\cdot ),\\\\tau }\\\\)</span> in the framework of double phase functionals with variable exponents <span>\\\\(\\\\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \\\\ x \\\\in X, \\\\ t \\\\ge 0\\\\)</span>, where <span>\\\\(p(x)&lt;q(x)\\\\)</span> for <span>\\\\(x\\\\in X\\\\)</span>, <span>\\\\(a(\\\\cdot )\\\\)</span> is a non-negative, bounded and Hölder continuous function of order <span>\\\\(\\\\theta \\\\in (0,1]\\\\)</span>. Our results are new even for the variable exponent Morrey spaces or for the doubling metric measure case in that the underlying spaces need not be bounded.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-025-01020-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01020-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01020-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了无界度量度量空间x上Musielak-Orlicz-Morrey空间\(L^{\Phi ,\kappa ,\theta }(X)\)上的Hardy-Littlewood极大算子\(M_{\lambda }, \ \lambda \ge 1\)和变量Riesz势算子\(I_{\alpha (\cdot ),\tau }, \ \tau \ge 1\)的有界性。作为一个重要的例子,我们在变指数双相泛函\(\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \ x \in X, \ t \ge 0\)的框架下得到了\(M_{\lambda }\)和\(I_{\alpha (\cdot ),\tau }\)的有界性,其中\(p(x)<q(x)\)对于\(x\in X\),\(a(\cdot )\)是阶为\(\theta \in (0,1]\)的非负的、有界的Hölder连续函数。我们的结果是新的,即使对于变指数Morrey空间或双度量度量情况下,底层空间不需要有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Riesz potential operators on Musielak–Orlicz–Morrey spaces over unbounded metric measure spaces

In this paper we discuss the boundedness of the Hardy–Littlewood maximal operator \(M_{\lambda }, \ \lambda \ge 1\), and the variable Riesz potential operator \(I_{\alpha (\cdot ),\tau }, \ \tau \ge 1\), on Musielak–Orlicz–Morrey spaces \(L^{\Phi ,\kappa ,\theta }(X)\) over unbounded metric measure spaces X. As an important example, we obtain the boundedness of \(M_{\lambda }\) and \(I_{\alpha (\cdot ),\tau }\) in the framework of double phase functionals with variable exponents \(\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}, \ x \in X, \ t \ge 0\), where \(p(x)<q(x)\) for \(x\in X\), \(a(\cdot )\) is a non-negative, bounded and Hölder continuous function of order \(\theta \in (0,1]\). Our results are new even for the variable exponent Morrey spaces or for the doubling metric measure case in that the underlying spaces need not be bounded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信