苏西在FPF

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Luis A. Anchordoqui, Ignatios Antoniadis, Karim Benakli, Jules Cunat, Dieter Lüst
{"title":"苏西在FPF","authors":"Luis A. Anchordoqui,&nbsp;Ignatios Antoniadis,&nbsp;Karim Benakli,&nbsp;Jules Cunat,&nbsp;Dieter Lüst","doi":"10.1140/epjc/s10052-025-13839-1","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental searches for supersymmetry (SUSY) are entering a new era. The failure to observe signals of sparticle production at the large hadron collider (LHC) has eroded the central motivation for SUSY breaking at the weak scale. However, String Theory requires SUSY at the fundamental scale <span>\\(M_s\\)</span> and hence SUSY could be broken at some high scale below <span>\\(M_s\\)</span>. Actually, if this were the case, the lack of experimental evidence for low-energy SUSY could have been anticipated, because most stringy models with high-scale SUSY breaking predict that sparticles would start popping up above about 10 TeV, well beyond the reach of current LHC experiments. We show that using next generation LHC experiments currently envisioned for the Forward Physics Facility (FPF) we could search for signals of neutrino-modulino oscillations to probe models with string scale in the grand unification region and SUSY breaking driven by sequestered gravity in gauge mediation. This is possible because of the unprecedented flux of neutrinos to be produced as secondary products in LHC collisions during the high-luminosity era and the capability of FPF experiments to detect and identify their flavors.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13839-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Susy at the FPF\",\"authors\":\"Luis A. Anchordoqui,&nbsp;Ignatios Antoniadis,&nbsp;Karim Benakli,&nbsp;Jules Cunat,&nbsp;Dieter Lüst\",\"doi\":\"10.1140/epjc/s10052-025-13839-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental searches for supersymmetry (SUSY) are entering a new era. The failure to observe signals of sparticle production at the large hadron collider (LHC) has eroded the central motivation for SUSY breaking at the weak scale. However, String Theory requires SUSY at the fundamental scale <span>\\\\(M_s\\\\)</span> and hence SUSY could be broken at some high scale below <span>\\\\(M_s\\\\)</span>. Actually, if this were the case, the lack of experimental evidence for low-energy SUSY could have been anticipated, because most stringy models with high-scale SUSY breaking predict that sparticles would start popping up above about 10 TeV, well beyond the reach of current LHC experiments. We show that using next generation LHC experiments currently envisioned for the Forward Physics Facility (FPF) we could search for signals of neutrino-modulino oscillations to probe models with string scale in the grand unification region and SUSY breaking driven by sequestered gravity in gauge mediation. This is possible because of the unprecedented flux of neutrinos to be produced as secondary products in LHC collisions during the high-luminosity era and the capability of FPF experiments to detect and identify their flavors.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 2\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13839-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-13839-1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13839-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

对超对称(SUSY)的实验研究正在进入一个新时代。未能在大型强子对撞机(LHC)上观测到粒子产生的信号已经削弱了超对称性在弱尺度上破缺的核心动机。然而,弦理论需要在基本尺度上的超对称性\(M_s\),因此超对称性可能在\(M_s\)以下的某个高尺度上被打破。实际上,如果是这样的话,低能量超对称性的实验证据的缺乏是可以预料到的,因为大多数具有高尺度超对称性断裂的弦模型预测,粒子将开始出现在大约10 TeV以上,远远超出了目前大型强子对撞机实验的范围。我们表明,利用目前为前沿物理设施(FPF)设想的下一代大型强子对撞机实验,我们可以搜索中微子-模态振荡的信号,以探测在大统一区域具有弦尺度的模型和在规范中介中由隔离重力驱动的超对称性破缺。这是可能的,因为在高亮度时代,LHC碰撞中产生的中微子作为次要产物的空前通量,以及FPF实验能够检测和识别它们的味道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Susy at the FPF

Experimental searches for supersymmetry (SUSY) are entering a new era. The failure to observe signals of sparticle production at the large hadron collider (LHC) has eroded the central motivation for SUSY breaking at the weak scale. However, String Theory requires SUSY at the fundamental scale \(M_s\) and hence SUSY could be broken at some high scale below \(M_s\). Actually, if this were the case, the lack of experimental evidence for low-energy SUSY could have been anticipated, because most stringy models with high-scale SUSY breaking predict that sparticles would start popping up above about 10 TeV, well beyond the reach of current LHC experiments. We show that using next generation LHC experiments currently envisioned for the Forward Physics Facility (FPF) we could search for signals of neutrino-modulino oscillations to probe models with string scale in the grand unification region and SUSY breaking driven by sequestered gravity in gauge mediation. This is possible because of the unprecedented flux of neutrinos to be produced as secondary products in LHC collisions during the high-luminosity era and the capability of FPF experiments to detect and identify their flavors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信