缩短“即用型”相对响应因子数据库-耦合热解/热解吸-气相色谱-质谱法筛选聚合物中邻苯二甲酸酯、多溴联苯醚和多溴联苯的分析时间

IF 1.3 4区 化学 Q4 BIOCHEMICAL RESEARCH METHODS
Yukihiko Kudo, Tomohiro Uchimura
{"title":"缩短“即用型”相对响应因子数据库-耦合热解/热解吸-气相色谱-质谱法筛选聚合物中邻苯二甲酸酯、多溴联苯醚和多溴联苯的分析时间","authors":"Yukihiko Kudo,&nbsp;Tomohiro Uchimura","doi":"10.1007/s10337-024-04371-7","DOIUrl":null,"url":null,"abstract":"<div><p>The European Union RoHS Directive restricts the presence of phthalate esters, polybrominated diphenyl ethers (PBDEs), and polybrominated biphenyls (PBBs) in electrotechnical products. The international standard IEC 62321-3-3 describes a method of screening for these chemicals using gas chromatography–mass spectrometry with a pyrolyzer/thermal desorption accessory (Py/TD-GC/MS). Although the IEC 62321-3-3 method is effective at determining levels of these restricted compounds in polymers, applying this method in RoHS testing poses two issues: it requires the preparation of a relative response factor (RRF) database from expensive standard mixed solutions, and it has a long analysis time (30 min). In a previous report, we described a method based on a “ready-to-use” RRF database that eliminates preparation of the RRF database. In this report, we resolved the remaining issue by improving the analytical throughput of the IEC 62321-3-3 method. By optimizing the Py/TD and GC/MS conditions, we almost halved the analysis time to 16 min while maintaining analytical accuracy. These optimized conditions were then combined with the above-mentioned “ready-to-use” RRF database to create a new method that resolves both of the issues with the IEC 62321-3-3 method. This new method demonstrated good sensitivity with a lower limit of detection of under 30 mg/kg for each target compound. We also assessed the analytical accuracy of this new method by analyzing various standard polymer materials on two different analytical instruments. On both instruments, the mean recovery rate was within 100 ± 30% for seven phthalate esters and for combined concentrations of PBDE and PBB congeners, which demonstrated that the quantitative accuracy of the new method is sufficient for RoHS testing. The new method resolves the issues with the IEC 62321-3-3 method and offers rapid, simple, and reliable screening that can be adopted for RoHS testing.</p></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"88 1","pages":"81 - 92"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10337-024-04371-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Shortening the Analysis Time of a “Ready-To-Use” Relative Response Factor Database-Coupled Pyrolyzer/Thermal Desorption–Gas Chromatography–Mass Spectrometry Method of Screening for Phthalate Esters, Polybrominated Diphenyl Ethers, and Polybrominated Biphenyls in Polymers\",\"authors\":\"Yukihiko Kudo,&nbsp;Tomohiro Uchimura\",\"doi\":\"10.1007/s10337-024-04371-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The European Union RoHS Directive restricts the presence of phthalate esters, polybrominated diphenyl ethers (PBDEs), and polybrominated biphenyls (PBBs) in electrotechnical products. The international standard IEC 62321-3-3 describes a method of screening for these chemicals using gas chromatography–mass spectrometry with a pyrolyzer/thermal desorption accessory (Py/TD-GC/MS). Although the IEC 62321-3-3 method is effective at determining levels of these restricted compounds in polymers, applying this method in RoHS testing poses two issues: it requires the preparation of a relative response factor (RRF) database from expensive standard mixed solutions, and it has a long analysis time (30 min). In a previous report, we described a method based on a “ready-to-use” RRF database that eliminates preparation of the RRF database. In this report, we resolved the remaining issue by improving the analytical throughput of the IEC 62321-3-3 method. By optimizing the Py/TD and GC/MS conditions, we almost halved the analysis time to 16 min while maintaining analytical accuracy. These optimized conditions were then combined with the above-mentioned “ready-to-use” RRF database to create a new method that resolves both of the issues with the IEC 62321-3-3 method. This new method demonstrated good sensitivity with a lower limit of detection of under 30 mg/kg for each target compound. We also assessed the analytical accuracy of this new method by analyzing various standard polymer materials on two different analytical instruments. On both instruments, the mean recovery rate was within 100 ± 30% for seven phthalate esters and for combined concentrations of PBDE and PBB congeners, which demonstrated that the quantitative accuracy of the new method is sufficient for RoHS testing. The new method resolves the issues with the IEC 62321-3-3 method and offers rapid, simple, and reliable screening that can be adopted for RoHS testing.</p></div>\",\"PeriodicalId\":518,\"journal\":{\"name\":\"Chromatographia\",\"volume\":\"88 1\",\"pages\":\"81 - 92\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10337-024-04371-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromatographia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10337-024-04371-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04371-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

欧盟RoHS指令限制了电工产品中邻苯二甲酸酯、多溴联苯醚(PBDEs)和多溴联苯(PBBs)的存在。国际标准IEC 62321-3-3描述了一种使用带热解/热解吸附件(Py/TD-GC/MS)的气相色谱-质谱法筛选这些化学品的方法。尽管IEC 62321-3-3方法在确定聚合物中这些受限化合物的水平方面是有效的,但在RoHS测试中应用该方法存在两个问题:它需要从昂贵的标准混合溶液中制备相对响应因子(RRF)数据库,并且分析时间长(30分钟)。在之前的报告中,我们描述了一种基于“即用”RRF数据库的方法,该方法消除了RRF数据库的准备工作。在本报告中,我们通过提高IEC 62321-3-3方法的分析吞吐量解决了剩下的问题。通过优化Py/TD和GC/MS条件,我们几乎将分析时间减半至16分钟,同时保持分析精度。然后将这些优化条件与上述“即用型”RRF数据库相结合,创建一种新方法,该方法使用IEC 62321-3-3方法解决了这两个问题。该方法具有良好的灵敏度,对每个目标化合物的检测下限小于30 mg/kg。我们还通过在两种不同的分析仪器上分析各种标准聚合物材料来评估该新方法的分析精度。在两种仪器上,7种邻苯二甲酸酯以及PBDE和PBB同系物的组合浓度的平均回收率在100±30%以内,表明新方法的定量准确性足以用于RoHS检测。新方法解决了IEC 62321-3-3方法的问题,提供了快速、简单、可靠的筛选,可用于RoHS测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortening the Analysis Time of a “Ready-To-Use” Relative Response Factor Database-Coupled Pyrolyzer/Thermal Desorption–Gas Chromatography–Mass Spectrometry Method of Screening for Phthalate Esters, Polybrominated Diphenyl Ethers, and Polybrominated Biphenyls in Polymers

The European Union RoHS Directive restricts the presence of phthalate esters, polybrominated diphenyl ethers (PBDEs), and polybrominated biphenyls (PBBs) in electrotechnical products. The international standard IEC 62321-3-3 describes a method of screening for these chemicals using gas chromatography–mass spectrometry with a pyrolyzer/thermal desorption accessory (Py/TD-GC/MS). Although the IEC 62321-3-3 method is effective at determining levels of these restricted compounds in polymers, applying this method in RoHS testing poses two issues: it requires the preparation of a relative response factor (RRF) database from expensive standard mixed solutions, and it has a long analysis time (30 min). In a previous report, we described a method based on a “ready-to-use” RRF database that eliminates preparation of the RRF database. In this report, we resolved the remaining issue by improving the analytical throughput of the IEC 62321-3-3 method. By optimizing the Py/TD and GC/MS conditions, we almost halved the analysis time to 16 min while maintaining analytical accuracy. These optimized conditions were then combined with the above-mentioned “ready-to-use” RRF database to create a new method that resolves both of the issues with the IEC 62321-3-3 method. This new method demonstrated good sensitivity with a lower limit of detection of under 30 mg/kg for each target compound. We also assessed the analytical accuracy of this new method by analyzing various standard polymer materials on two different analytical instruments. On both instruments, the mean recovery rate was within 100 ± 30% for seven phthalate esters and for combined concentrations of PBDE and PBB congeners, which demonstrated that the quantitative accuracy of the new method is sufficient for RoHS testing. The new method resolves the issues with the IEC 62321-3-3 method and offers rapid, simple, and reliable screening that can be adopted for RoHS testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chromatographia
Chromatographia 化学-分析化学
CiteScore
3.40
自引率
5.90%
发文量
103
审稿时长
2.2 months
期刊介绍: Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信