循环希格斯束,次调和函数,和狄利克雷问题

IF 0.6 3区 数学 Q3 MATHEMATICS
Natsuo Miyatake
{"title":"循环希格斯束,次调和函数,和狄利克雷问题","authors":"Natsuo Miyatake","doi":"10.1007/s10455-025-09985-0","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate the existence and uniqueness of the solution to the Dirichlet problem for a generalization of Hitchin’s equation for diagonal harmonic metrics on cyclic Higgs bundles. The generalized equations are formulated using subharmonic functions. In this generalization, the coefficient exhibits worse regularity than that in the original equation.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09985-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Cyclic Higgs bundles, subharmonic functions, and the Dirichlet problem\",\"authors\":\"Natsuo Miyatake\",\"doi\":\"10.1007/s10455-025-09985-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate the existence and uniqueness of the solution to the Dirichlet problem for a generalization of Hitchin’s equation for diagonal harmonic metrics on cyclic Higgs bundles. The generalized equations are formulated using subharmonic functions. In this generalization, the coefficient exhibits worse regularity than that in the original equation.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-09985-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-09985-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09985-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了循环希格斯束对角调和度量的希钦方程的推广的Dirichlet问题解的存在唯一性。广义方程是用次调和函数表示的。在这种推广下,系数表现出比原方程更差的规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic Higgs bundles, subharmonic functions, and the Dirichlet problem

We demonstrate the existence and uniqueness of the solution to the Dirichlet problem for a generalization of Hitchin’s equation for diagonal harmonic metrics on cyclic Higgs bundles. The generalized equations are formulated using subharmonic functions. In this generalization, the coefficient exhibits worse regularity than that in the original equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信