涉及对数应变的理想各向同性柯西弹性的本构条件

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Marco Valerio d’Agostino, Sebastian Holthausen, Davide Bernardini, Adam Sky, Ionel-Dumitrel Ghiba, Robert J. Martin, Patrizio Neff
{"title":"涉及对数应变的理想各向同性柯西弹性的本构条件","authors":"Marco Valerio d’Agostino,&nbsp;Sebastian Holthausen,&nbsp;Davide Bernardini,&nbsp;Adam Sky,&nbsp;Ionel-Dumitrel Ghiba,&nbsp;Robert J. Martin,&nbsp;Patrizio Neff","doi":"10.1007/s10659-024-10097-2","DOIUrl":null,"url":null,"abstract":"<div><p>Following Hill and Leblond, the aim of our work is to show, for isotropic nonlinear elasticity, a relation between the corotational Zaremba–Jaumann objective derivative of the Cauchy stress <span>\\(\\sigma \\)</span>, i.e. </p><div><div><span> $$\\begin{aligned} \\frac{\\mathrm {D}^{\\operatorname{ZJ}}}{ \\mathrm {D}t}[\\sigma ] = \\frac{\\mathrm {D}}{\\mathrm {D}t}[\\sigma ] - W \\, \\sigma + \\sigma \\, W, \\qquad W = \\mbox{skew}(\\dot{F} \\, F^{-1}) \\end{aligned}$$ </span></div></div><p> and a constitutive requirement involving the logarithmic strain tensor. Given the deformation tensor <span>\\(F = \\mathrm {D}\\varphi \\)</span>, the left Cauchy-Green tensor <span>\\(B = F \\, F^{T}\\)</span>, and the strain-rate tensor <span>\\(D = \\operatorname{sym}(\\dot{F} \\, F^{-1})\\)</span>, we show that </p><div><div><span> $$\\begin{aligned} &amp; \\forall \\,D\\in \\operatorname{Sym}(3) \\! \\setminus \\! \\{0\\}: ~ \\left \\langle \\frac{\\mathrm {D}^{\\operatorname{ZJ}}}{ \\mathrm {D}t}[\\sigma ],D\\right \\rangle &gt; 0 \\\\ &amp; \\quad \\iff \\quad \\log B \\longmapsto \\widehat{\\sigma}(\\log B) \\; \\textrm{is strongly Hilbert-monotone} \\\\ &amp;\\quad \\iff \\quad \\operatorname{sym} \\mathrm {D}_{\\log B} \\widehat{\\sigma}(\\log B) \\in \\operatorname{Sym}^{++}_{4}(6) \\quad \\text{(TSTS-M$^{++}$)}, \\end{aligned}$$ </span></div><div>\n (1)\n </div></div><p> where <span>\\(\\operatorname{Sym}^{++}_{4}(6)\\)</span> denotes the set of positive definite, (minor and major) symmetric fourth order tensors. We call the first inequality of (1) “corotational stability postulate” (CSP), a novel concept, which implies the <b>T</b>rue-<b>S</b>tress <b>T</b>rue-<b>S</b>train strict Hilbert-<b>M</b>onotonicity (TSTS-M<sup>+</sup>) for <span>\\(B \\mapsto \\sigma (B) = \\widehat{\\sigma}(\\log B)\\)</span>, i.e. </p><div><div><span>$$ \\left \\langle \\widehat{\\sigma}(\\log B_{1})-\\widehat{\\sigma}(\\log B_{2}), \\log B_{1}-\\log B_{2}\\right \\rangle &gt; 0 \\qquad \\forall \\, B_{1}\\neq B_{2} \\in \\operatorname{Sym}^{++}(3) \\, . $$</span></div></div><p> A similar result, but for the Kirchhoff stress <span>\\(\\tau = J \\, \\sigma \\)</span> has been shown by Hill as early as 1968. Leblond translated this idea to the Cauchy stress <span>\\(\\sigma \\)</span> but only for the hyperelastic case. In this paper we expand on the ideas of Hill and Leblond, extending Leblond calculus to the Cauchy elastic case.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constitutive Condition for Idealized Isotropic Cauchy Elasticity Involving the Logarithmic Strain\",\"authors\":\"Marco Valerio d’Agostino,&nbsp;Sebastian Holthausen,&nbsp;Davide Bernardini,&nbsp;Adam Sky,&nbsp;Ionel-Dumitrel Ghiba,&nbsp;Robert J. Martin,&nbsp;Patrizio Neff\",\"doi\":\"10.1007/s10659-024-10097-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following Hill and Leblond, the aim of our work is to show, for isotropic nonlinear elasticity, a relation between the corotational Zaremba–Jaumann objective derivative of the Cauchy stress <span>\\\\(\\\\sigma \\\\)</span>, i.e. </p><div><div><span> $$\\\\begin{aligned} \\\\frac{\\\\mathrm {D}^{\\\\operatorname{ZJ}}}{ \\\\mathrm {D}t}[\\\\sigma ] = \\\\frac{\\\\mathrm {D}}{\\\\mathrm {D}t}[\\\\sigma ] - W \\\\, \\\\sigma + \\\\sigma \\\\, W, \\\\qquad W = \\\\mbox{skew}(\\\\dot{F} \\\\, F^{-1}) \\\\end{aligned}$$ </span></div></div><p> and a constitutive requirement involving the logarithmic strain tensor. Given the deformation tensor <span>\\\\(F = \\\\mathrm {D}\\\\varphi \\\\)</span>, the left Cauchy-Green tensor <span>\\\\(B = F \\\\, F^{T}\\\\)</span>, and the strain-rate tensor <span>\\\\(D = \\\\operatorname{sym}(\\\\dot{F} \\\\, F^{-1})\\\\)</span>, we show that </p><div><div><span> $$\\\\begin{aligned} &amp; \\\\forall \\\\,D\\\\in \\\\operatorname{Sym}(3) \\\\! \\\\setminus \\\\! \\\\{0\\\\}: ~ \\\\left \\\\langle \\\\frac{\\\\mathrm {D}^{\\\\operatorname{ZJ}}}{ \\\\mathrm {D}t}[\\\\sigma ],D\\\\right \\\\rangle &gt; 0 \\\\\\\\ &amp; \\\\quad \\\\iff \\\\quad \\\\log B \\\\longmapsto \\\\widehat{\\\\sigma}(\\\\log B) \\\\; \\\\textrm{is strongly Hilbert-monotone} \\\\\\\\ &amp;\\\\quad \\\\iff \\\\quad \\\\operatorname{sym} \\\\mathrm {D}_{\\\\log B} \\\\widehat{\\\\sigma}(\\\\log B) \\\\in \\\\operatorname{Sym}^{++}_{4}(6) \\\\quad \\\\text{(TSTS-M$^{++}$)}, \\\\end{aligned}$$ </span></div><div>\\n (1)\\n </div></div><p> where <span>\\\\(\\\\operatorname{Sym}^{++}_{4}(6)\\\\)</span> denotes the set of positive definite, (minor and major) symmetric fourth order tensors. We call the first inequality of (1) “corotational stability postulate” (CSP), a novel concept, which implies the <b>T</b>rue-<b>S</b>tress <b>T</b>rue-<b>S</b>train strict Hilbert-<b>M</b>onotonicity (TSTS-M<sup>+</sup>) for <span>\\\\(B \\\\mapsto \\\\sigma (B) = \\\\widehat{\\\\sigma}(\\\\log B)\\\\)</span>, i.e. </p><div><div><span>$$ \\\\left \\\\langle \\\\widehat{\\\\sigma}(\\\\log B_{1})-\\\\widehat{\\\\sigma}(\\\\log B_{2}), \\\\log B_{1}-\\\\log B_{2}\\\\right \\\\rangle &gt; 0 \\\\qquad \\\\forall \\\\, B_{1}\\\\neq B_{2} \\\\in \\\\operatorname{Sym}^{++}(3) \\\\, . $$</span></div></div><p> A similar result, but for the Kirchhoff stress <span>\\\\(\\\\tau = J \\\\, \\\\sigma \\\\)</span> has been shown by Hill as early as 1968. Leblond translated this idea to the Cauchy stress <span>\\\\(\\\\sigma \\\\)</span> but only for the hyperelastic case. In this paper we expand on the ideas of Hill and Leblond, extending Leblond calculus to the Cauchy elastic case.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-024-10097-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10097-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

继Hill和Leblond之后,我们工作的目的是表明,对于各向同性非线性弹性,柯西应力的旋转Zaremba-Jaumann目标导数\(\sigma \)(即$$\begin{aligned} \frac{\mathrm {D}^{\operatorname{ZJ}}}{ \mathrm {D}t}[\sigma ] = \frac{\mathrm {D}}{\mathrm {D}t}[\sigma ] - W \, \sigma + \sigma \, W, \qquad W = \mbox{skew}(\dot{F} \, F^{-1}) \end{aligned}$$)与涉及对数应变张量的本构要求之间的关系。给定变形张量\(F = \mathrm {D}\varphi \),左Cauchy-Green张量\(B = F \, F^{T}\)和应变率张量\(D = \operatorname{sym}(\dot{F} \, F^{-1})\),我们表明$$\begin{aligned} & \forall \,D\in \operatorname{Sym}(3) \! \setminus \! \{0\}: ~ \left \langle \frac{\mathrm {D}^{\operatorname{ZJ}}}{ \mathrm {D}t}[\sigma ],D\right \rangle > 0 \\ & \quad \iff \quad \log B \longmapsto \widehat{\sigma}(\log B) \; \textrm{is strongly Hilbert-monotone} \\ &\quad \iff \quad \operatorname{sym} \mathrm {D}_{\log B} \widehat{\sigma}(\log B) \in \operatorname{Sym}^{++}_{4}(6) \quad \text{(TSTS-M$^{++}$)}, \end{aligned}$$(1),其中\(\operatorname{Sym}^{++}_{4}(6)\)表示正定的(小的和大的)对称四阶张量的集合。我们称(1)的第一个不等式为“旋转稳定性假设”(CSP),这是一个新的概念,它暗示了\(B \mapsto \sigma (B) = \widehat{\sigma}(\log B)\)的真应力真应变严格希尔伯特单调性(TSTS-M+),即$$ \left \langle \widehat{\sigma}(\log B_{1})-\widehat{\sigma}(\log B_{2}), \log B_{1}-\log B_{2}\right \rangle > 0 \qquad \forall \, B_{1}\neq B_{2} \in \operatorname{Sym}^{++}(3) \, . $$。一个类似的结果,但对于Kirchhoff应力\(\tau = J \, \sigma \), Hill早在1968年就已经证明了。莱布隆德将这个想法转化为柯西应力\(\sigma \),但只适用于超弹性情况。在本文中,我们扩展了Hill和Leblond的思想,将Leblond微积分推广到柯西弹性情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Constitutive Condition for Idealized Isotropic Cauchy Elasticity Involving the Logarithmic Strain

Following Hill and Leblond, the aim of our work is to show, for isotropic nonlinear elasticity, a relation between the corotational Zaremba–Jaumann objective derivative of the Cauchy stress \(\sigma \), i.e.

$$\begin{aligned} \frac{\mathrm {D}^{\operatorname{ZJ}}}{ \mathrm {D}t}[\sigma ] = \frac{\mathrm {D}}{\mathrm {D}t}[\sigma ] - W \, \sigma + \sigma \, W, \qquad W = \mbox{skew}(\dot{F} \, F^{-1}) \end{aligned}$$

and a constitutive requirement involving the logarithmic strain tensor. Given the deformation tensor \(F = \mathrm {D}\varphi \), the left Cauchy-Green tensor \(B = F \, F^{T}\), and the strain-rate tensor \(D = \operatorname{sym}(\dot{F} \, F^{-1})\), we show that

$$\begin{aligned} & \forall \,D\in \operatorname{Sym}(3) \! \setminus \! \{0\}: ~ \left \langle \frac{\mathrm {D}^{\operatorname{ZJ}}}{ \mathrm {D}t}[\sigma ],D\right \rangle > 0 \\ & \quad \iff \quad \log B \longmapsto \widehat{\sigma}(\log B) \; \textrm{is strongly Hilbert-monotone} \\ &\quad \iff \quad \operatorname{sym} \mathrm {D}_{\log B} \widehat{\sigma}(\log B) \in \operatorname{Sym}^{++}_{4}(6) \quad \text{(TSTS-M$^{++}$)}, \end{aligned}$$
(1)

where \(\operatorname{Sym}^{++}_{4}(6)\) denotes the set of positive definite, (minor and major) symmetric fourth order tensors. We call the first inequality of (1) “corotational stability postulate” (CSP), a novel concept, which implies the True-Stress True-Strain strict Hilbert-Monotonicity (TSTS-M+) for \(B \mapsto \sigma (B) = \widehat{\sigma}(\log B)\), i.e.

$$ \left \langle \widehat{\sigma}(\log B_{1})-\widehat{\sigma}(\log B_{2}), \log B_{1}-\log B_{2}\right \rangle > 0 \qquad \forall \, B_{1}\neq B_{2} \in \operatorname{Sym}^{++}(3) \, . $$

A similar result, but for the Kirchhoff stress \(\tau = J \, \sigma \) has been shown by Hill as early as 1968. Leblond translated this idea to the Cauchy stress \(\sigma \) but only for the hyperelastic case. In this paper we expand on the ideas of Hill and Leblond, extending Leblond calculus to the Cauchy elastic case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信