基于对比最优传输的仇恨言论反叙事生成方法

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Linhao Zhang;Li Jin;Guangluan Xu;Xiaoyu Li;Xian Sun
{"title":"基于对比最优传输的仇恨言论反叙事生成方法","authors":"Linhao Zhang;Li Jin;Guangluan Xu;Xiaoyu Li;Xian Sun","doi":"10.1109/TETCI.2024.3406691","DOIUrl":null,"url":null,"abstract":"Counter-narratives, which are direct responses consisting of non-aggressive fact-based arguments, have emerged as a highly effective approach to combat the proliferation of hate speech. Previous methodologies have primarily focused on fine-tuning and post-editing techniques to ensure the fluency of generated contents, while overlooking the critical aspects of individualization and relevance concerning the specific hatred targets, such as LGBT groups, immigrants, etc. This research paper introduces a novel framework based on contrastive optimal transport, which effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives. Firstly, an Optimal Transport Kernel (OTK) module is leveraged to incorporate hatred target information in the token representations, in which the comparison pairs are extracted between original and transported features. Secondly, a self-contrastive learning module is employed to address the issue of model degeneration. This module achieves this by generating an anisotropic distribution of token representations. Finally, a target-oriented search method is integrated as an improved decoding strategy to explicitly promote domain relevance and diversification in the inference process. This strategy modifies the model's confidence score by considering both token similarity and target relevance. Quantitative and qualitative experiments have been evaluated on two benchmark datasets, which demonstrate that our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"740-756"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COT: A Generative Approach for Hate Speech Counter-Narratives via Contrastive Optimal Transport\",\"authors\":\"Linhao Zhang;Li Jin;Guangluan Xu;Xiaoyu Li;Xian Sun\",\"doi\":\"10.1109/TETCI.2024.3406691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counter-narratives, which are direct responses consisting of non-aggressive fact-based arguments, have emerged as a highly effective approach to combat the proliferation of hate speech. Previous methodologies have primarily focused on fine-tuning and post-editing techniques to ensure the fluency of generated contents, while overlooking the critical aspects of individualization and relevance concerning the specific hatred targets, such as LGBT groups, immigrants, etc. This research paper introduces a novel framework based on contrastive optimal transport, which effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives. Firstly, an Optimal Transport Kernel (OTK) module is leveraged to incorporate hatred target information in the token representations, in which the comparison pairs are extracted between original and transported features. Secondly, a self-contrastive learning module is employed to address the issue of model degeneration. This module achieves this by generating an anisotropic distribution of token representations. Finally, a target-oriented search method is integrated as an improved decoding strategy to explicitly promote domain relevance and diversification in the inference process. This strategy modifies the model's confidence score by considering both token similarity and target relevance. Quantitative and qualitative experiments have been evaluated on two benchmark datasets, which demonstrate that our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 1\",\"pages\":\"740-756\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10642972/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10642972/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

反叙事是由非侵略性的基于事实的论点组成的直接反应,已成为打击仇恨言论扩散的一种非常有效的方法。以前的方法主要集中在微调和后期编辑技术上,以确保生成内容的流畅性,而忽略了针对特定仇恨目标(如LGBT群体、移民等)的个性化和相关性的关键方面。本文提出了一种基于对比最优传输的新框架,该框架有效地解决了在产生反叙事时保持目标互动和促进多样化的挑战。首先,利用最优传输核(OTK)模块将仇恨目标信息纳入令牌表示中,其中提取原始特征和传输特征之间的比较对。其次,采用自对比学习模块来解决模型退化问题。该模块通过生成标记表示的各向异性分布来实现这一点。最后,将目标导向的搜索方法集成为改进的解码策略,以明确促进推理过程中的领域相关性和多样化。该策略通过考虑令牌相似度和目标相关性来修改模型的置信度得分。定量和定性实验在两个基准数据集上进行了评估,结果表明我们提出的模型明显优于目前通过多个方面的指标评估的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COT: A Generative Approach for Hate Speech Counter-Narratives via Contrastive Optimal Transport
Counter-narratives, which are direct responses consisting of non-aggressive fact-based arguments, have emerged as a highly effective approach to combat the proliferation of hate speech. Previous methodologies have primarily focused on fine-tuning and post-editing techniques to ensure the fluency of generated contents, while overlooking the critical aspects of individualization and relevance concerning the specific hatred targets, such as LGBT groups, immigrants, etc. This research paper introduces a novel framework based on contrastive optimal transport, which effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives. Firstly, an Optimal Transport Kernel (OTK) module is leveraged to incorporate hatred target information in the token representations, in which the comparison pairs are extracted between original and transported features. Secondly, a self-contrastive learning module is employed to address the issue of model degeneration. This module achieves this by generating an anisotropic distribution of token representations. Finally, a target-oriented search method is integrated as an improved decoding strategy to explicitly promote domain relevance and diversification in the inference process. This strategy modifies the model's confidence score by considering both token similarity and target relevance. Quantitative and qualitative experiments have been evaluated on two benchmark datasets, which demonstrate that our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信