切换随机多智能体系统的规定时间最优一致性:强化学习策略

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weiwei Guang;Xin Wang;Lihua Tan;Jian Sun;Tingwen Huang
{"title":"切换随机多智能体系统的规定时间最优一致性:强化学习策略","authors":"Weiwei Guang;Xin Wang;Lihua Tan;Jian Sun;Tingwen Huang","doi":"10.1109/TETCI.2024.3451334","DOIUrl":null,"url":null,"abstract":"This paper focuses on the event-triggered-based prescribed-time optimal consensus control issue for switched stochastic nonlinear multi–agent systems under switching topologies. Notably, the system stability may be affected owing to the change in information transmission channels between agents. To surmount this obstacle, this paper presents a reconstruction mechanism to rebuild the consensus error at the switching topology instant. Combining optimal control theory and reinforcement learning strategy, the identifier neural network is utilized to approximate the unknown function, with its corresponding updating law being independent of the switching duration of system dynamics. In addition, an event-triggered mechanism is adopted to enhance the efficiency of resource utilization. With the assistance of the Lyapunov stability principle, sufficient conditions are established to ensure that all signals in the closed-loop system are cooperatively semi-globally uniformly ultimately bounded in probability and the consensus error is capable of converging to the specified interval in a prescribed time. At last, a simulation example is carried out to validate the feasibility of the presented control scheme.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"75-86"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed-Time Optimal Consensus for Switched Stochastic Multiagent Systems: Reinforcement Learning Strategy\",\"authors\":\"Weiwei Guang;Xin Wang;Lihua Tan;Jian Sun;Tingwen Huang\",\"doi\":\"10.1109/TETCI.2024.3451334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the event-triggered-based prescribed-time optimal consensus control issue for switched stochastic nonlinear multi–agent systems under switching topologies. Notably, the system stability may be affected owing to the change in information transmission channels between agents. To surmount this obstacle, this paper presents a reconstruction mechanism to rebuild the consensus error at the switching topology instant. Combining optimal control theory and reinforcement learning strategy, the identifier neural network is utilized to approximate the unknown function, with its corresponding updating law being independent of the switching duration of system dynamics. In addition, an event-triggered mechanism is adopted to enhance the efficiency of resource utilization. With the assistance of the Lyapunov stability principle, sufficient conditions are established to ensure that all signals in the closed-loop system are cooperatively semi-globally uniformly ultimately bounded in probability and the consensus error is capable of converging to the specified interval in a prescribed time. At last, a simulation example is carried out to validate the feasibility of the presented control scheme.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 1\",\"pages\":\"75-86\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669914/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669914/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了切换随机非线性多智能体系统在切换拓扑下基于事件触发的约定时间最优一致性控制问题。值得注意的是,agent之间信息传递渠道的改变可能会影响系统的稳定性。为了克服这一障碍,本文提出了一种重构机制来重构交换拓扑瞬间的一致性误差。结合最优控制理论和强化学习策略,利用辨识器神经网络逼近未知函数,其更新规律与系统动力学切换时间无关。此外,采用事件触发机制,提高了资源利用效率。利用Lyapunov稳定性原理,建立了闭环系统中所有信号在概率上是合作半全局一致最终有界的充分条件,并且一致误差能够在规定的时间内收敛到规定的区间。最后通过仿真算例验证了所提控制方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed-Time Optimal Consensus for Switched Stochastic Multiagent Systems: Reinforcement Learning Strategy
This paper focuses on the event-triggered-based prescribed-time optimal consensus control issue for switched stochastic nonlinear multi–agent systems under switching topologies. Notably, the system stability may be affected owing to the change in information transmission channels between agents. To surmount this obstacle, this paper presents a reconstruction mechanism to rebuild the consensus error at the switching topology instant. Combining optimal control theory and reinforcement learning strategy, the identifier neural network is utilized to approximate the unknown function, with its corresponding updating law being independent of the switching duration of system dynamics. In addition, an event-triggered mechanism is adopted to enhance the efficiency of resource utilization. With the assistance of the Lyapunov stability principle, sufficient conditions are established to ensure that all signals in the closed-loop system are cooperatively semi-globally uniformly ultimately bounded in probability and the consensus error is capable of converging to the specified interval in a prescribed time. At last, a simulation example is carried out to validate the feasibility of the presented control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信