基于图神经网络的电压稳定假数据注入检测方法

IF 3.3 Q3 ENERGY & FUELS
Shahriar Rahman Fahim;Rachad Atat;Cihat Kececi;Abdulrahman Takiddin;Muhammad Ismail;Katherine R. Davis;Erchin Serpedin
{"title":"基于图神经网络的电压稳定假数据注入检测方法","authors":"Shahriar Rahman Fahim;Rachad Atat;Cihat Kececi;Abdulrahman Takiddin;Muhammad Ismail;Katherine R. Davis;Erchin Serpedin","doi":"10.1109/OAJPE.2024.3524268","DOIUrl":null,"url":null,"abstract":"The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"12-23"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824826","citationCount":"0","resultStr":"{\"title\":\"Graph Neural Network-Based Approach for Detecting False Data Injection Attacks on Voltage Stability\",\"authors\":\"Shahriar Rahman Fahim;Rachad Atat;Cihat Kececi;Abdulrahman Takiddin;Muhammad Ismail;Katherine R. Davis;Erchin Serpedin\",\"doi\":\"10.1109/OAJPE.2024.3524268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"12-23\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824826\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824826/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10824826/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

信息和通信技术与现代电力系统的融合有助于提高效率、可控性和电压调节能力。同时,这些技术使电力系统暴露在网络攻击之下,可能导致电压不稳定和重大损坏。传统的虚假数据注入攻击(FDIAs)检测器不足以解决对电压调节的网络攻击,因为a)它们忽略了电网内的此类攻击;b)主要依赖于静态阈值和简单的异常检测技术,这些技术无法捕捉电压稳定、网络攻击和防御行动之间复杂的相互作用。为了解决上述挑战,本文开发了一种FDIA检测方法,该方法考虑了对电压调节的数据伪造攻击,并提高了电压稳定指数。提出了一种基于图自编码器的检测电压调节网络攻击的方法。提出了一种双级优化方法,在电压调节环境下对攻击者和防御者的目标同时进行优化。所提出的检测器经过了针对不同类型攻击的严格训练和测试,在所有情况下都展示了增强的泛化性能。在486总线的伊比利亚电力系统拓扑上进行了仿真。该模型的平均检测率达到了98.11%,与现有的先进检测器相比,提高了10-25%。这为解决电压调节网络攻击的有效性提供了强有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Network-Based Approach for Detecting False Data Injection Attacks on Voltage Stability
The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信