作物育种中的合成基因组学:证据、机遇和挑战

Yuhan Zhou, Ziqi Zhou, Qingyao Shu
{"title":"作物育种中的合成基因组学:证据、机遇和挑战","authors":"Yuhan Zhou,&nbsp;Ziqi Zhou,&nbsp;Qingyao Shu","doi":"10.1016/j.cropd.2024.100090","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic genomics represents a formidable domain, encompassing the intentional design, construction, and manipulation of artificial genetic material to generate novel organisms or modify existing ones. In the context of crop breeding, molecular design breeding has emerged as a transformative force, ushering in notable progress. Nevertheless, the field faces unprecedented challenges, with climate change, population growth, and the scarcity of superior genetic resources exerting significant pressures. Recent strides in DNA synthesis methodologies, exemplified by innovative techniques like SCRaMbLE, have empowered the assembly and engineering of viral and microbial genomes. These advancements open promising avenues for the application of synthetic genomics in multicellular eukaryotic organisms, particularly in the realm of crop improvement. Synthetic genomics, with its capacity to manipulate gene sequences and regulatory elements, holds immense promise for the breeding of crops that meet diverse needs. Despite these advancements, the integration of synthetic genomics into crop breeding encounters hurdles, including the intricacies of complex crop genomes, the unpredictability introduced by epigenetic modification, and the limitations in achieving robust transformation processes. Addressing these challenges is pivotal to unlock the full potential of synthetic genomics in revolutionizing crop breeding. Looking ahead, we envision synthetic genomics in crop breeding not only as a scientific frontier but also as a burgeoning industry.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 1","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic genomics in crop breeding: Evidence, opportunities and challenges\",\"authors\":\"Yuhan Zhou,&nbsp;Ziqi Zhou,&nbsp;Qingyao Shu\",\"doi\":\"10.1016/j.cropd.2024.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synthetic genomics represents a formidable domain, encompassing the intentional design, construction, and manipulation of artificial genetic material to generate novel organisms or modify existing ones. In the context of crop breeding, molecular design breeding has emerged as a transformative force, ushering in notable progress. Nevertheless, the field faces unprecedented challenges, with climate change, population growth, and the scarcity of superior genetic resources exerting significant pressures. Recent strides in DNA synthesis methodologies, exemplified by innovative techniques like SCRaMbLE, have empowered the assembly and engineering of viral and microbial genomes. These advancements open promising avenues for the application of synthetic genomics in multicellular eukaryotic organisms, particularly in the realm of crop improvement. Synthetic genomics, with its capacity to manipulate gene sequences and regulatory elements, holds immense promise for the breeding of crops that meet diverse needs. Despite these advancements, the integration of synthetic genomics into crop breeding encounters hurdles, including the intricacies of complex crop genomes, the unpredictability introduced by epigenetic modification, and the limitations in achieving robust transformation processes. Addressing these challenges is pivotal to unlock the full potential of synthetic genomics in revolutionizing crop breeding. Looking ahead, we envision synthetic genomics in crop breeding not only as a scientific frontier but also as a burgeoning industry.</div></div>\",\"PeriodicalId\":100341,\"journal\":{\"name\":\"Crop Design\",\"volume\":\"4 1\",\"pages\":\"Article 100090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772899424000399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899424000399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成基因组学代表了一个强大的领域,包括有意设计、构建和操纵人工遗传物质,以产生新的生物体或修改现有的生物体。在作物育种的背景下,分子设计育种已经成为一股变革力量,带来了显着的进步。然而,该领域面临着前所未有的挑战,气候变化、人口增长和优质遗传资源的稀缺施加了巨大的压力。DNA合成方法的最新进展,例如像SCRaMbLE这样的创新技术,使病毒和微生物基因组的组装和工程得以实现。这些进展为合成基因组学在多细胞真核生物中的应用开辟了有希望的途径,特别是在作物改良领域。合成基因组学具有操纵基因序列和调控元件的能力,为培育满足各种需求的作物带来了巨大的希望。尽管取得了这些进步,但将合成基因组学整合到作物育种中遇到了障碍,包括复杂作物基因组的复杂性、表观遗传修饰引入的不可预测性以及实现稳健转化过程的局限性。解决这些挑战对于释放合成基因组学在彻底改变作物育种方面的全部潜力至关重要。展望未来,我们设想作物育种中的合成基因组学不仅是一个科学前沿,而且是一个新兴的产业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic genomics in crop breeding: Evidence, opportunities and challenges
Synthetic genomics represents a formidable domain, encompassing the intentional design, construction, and manipulation of artificial genetic material to generate novel organisms or modify existing ones. In the context of crop breeding, molecular design breeding has emerged as a transformative force, ushering in notable progress. Nevertheless, the field faces unprecedented challenges, with climate change, population growth, and the scarcity of superior genetic resources exerting significant pressures. Recent strides in DNA synthesis methodologies, exemplified by innovative techniques like SCRaMbLE, have empowered the assembly and engineering of viral and microbial genomes. These advancements open promising avenues for the application of synthetic genomics in multicellular eukaryotic organisms, particularly in the realm of crop improvement. Synthetic genomics, with its capacity to manipulate gene sequences and regulatory elements, holds immense promise for the breeding of crops that meet diverse needs. Despite these advancements, the integration of synthetic genomics into crop breeding encounters hurdles, including the intricacies of complex crop genomes, the unpredictability introduced by epigenetic modification, and the limitations in achieving robust transformation processes. Addressing these challenges is pivotal to unlock the full potential of synthetic genomics in revolutionizing crop breeding. Looking ahead, we envision synthetic genomics in crop breeding not only as a scientific frontier but also as a burgeoning industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信