AutoVL:自动溪流分离变化集水区和气候影响分析

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Vincent Lyne
{"title":"AutoVL:自动溪流分离变化集水区和气候影响分析","authors":"Vincent Lyne","doi":"10.1016/j.hydroa.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><div>The separation of streamflow into fastflow and slowflow components has been historically ambiguous, with existing separation methods like the Lyne-Hollick (LH) algorithm facing challenges due to subjective parameter choices. Here, we address this issue by developing the AutoVL algorithm which objectively and automatically partitions streamflow for no parameter input. AutoVL uses iterative statistical models, including a Signal Reconstructor for fastflow and an autoregressive moving-average (ARMA) model for slowflow, to estimate key hydrologic parameters. The algorithm couples the two models to iteratively estimate these parameters and to accurately separate streamflow. When applied to the Harvey River, Dingo Road station data, AutoVL identified significant seasonal and long-term variations in hydrologic parameters, reflecting the possible influence of climate change altering the temporal dynamics of catchment responses. The algorithm highlighted strongly coupled changes in infiltration and decay rates from altered streamflow patterns, offering a clearer understanding of streamflow responses to climate change. This performance suggests that AutoVL provides a more reliable, objective, efficient, and standard method for streamflow separation compared to previous approaches, enabling more accurate and confident hydrological modeling. By providing objective, dynamic insights into catchment behavior, AutoVL offers a promising tool for climate change studies and streamflow analysis.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"26 ","pages":"Article 100195"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoVL: Automated streamflow separation for changing catchments and climate impact analysis\",\"authors\":\"Vincent Lyne\",\"doi\":\"10.1016/j.hydroa.2024.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The separation of streamflow into fastflow and slowflow components has been historically ambiguous, with existing separation methods like the Lyne-Hollick (LH) algorithm facing challenges due to subjective parameter choices. Here, we address this issue by developing the AutoVL algorithm which objectively and automatically partitions streamflow for no parameter input. AutoVL uses iterative statistical models, including a Signal Reconstructor for fastflow and an autoregressive moving-average (ARMA) model for slowflow, to estimate key hydrologic parameters. The algorithm couples the two models to iteratively estimate these parameters and to accurately separate streamflow. When applied to the Harvey River, Dingo Road station data, AutoVL identified significant seasonal and long-term variations in hydrologic parameters, reflecting the possible influence of climate change altering the temporal dynamics of catchment responses. The algorithm highlighted strongly coupled changes in infiltration and decay rates from altered streamflow patterns, offering a clearer understanding of streamflow responses to climate change. This performance suggests that AutoVL provides a more reliable, objective, efficient, and standard method for streamflow separation compared to previous approaches, enabling more accurate and confident hydrological modeling. By providing objective, dynamic insights into catchment behavior, AutoVL offers a promising tool for climate change studies and streamflow analysis.</div></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"26 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915524000257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从历史上看,将水流分为快流和慢流的方法一直很模糊,现有的分离方法,如Lyne-Hollick (LH)算法,由于主观参数的选择而面临挑战。在这里,我们通过开发AutoVL算法来解决这个问题,该算法可以客观地自动划分无参数输入的流。AutoVL使用迭代统计模型,包括快速流量的信号重构器和慢流量的自回归移动平均(ARMA)模型,来估计关键的水文参数。该算法将两种模型结合起来,迭代估计这些参数,并精确分离水流。当AutoVL应用于Harvey河、Dingo路站数据时,发现水文参数存在显著的季节性和长期变化,反映了气候变化改变流域响应时间动态的可能影响。该算法强调了由改变的水流模式引起的入渗率和衰减率的强烈耦合变化,从而更清楚地了解了水流对气候变化的响应。这一性能表明,与之前的方法相比,AutoVL提供了一种更可靠、客观、高效和标准的溪流分离方法,可以实现更准确、更自信的水文建模。通过对流域行为提供客观、动态的洞察,AutoVL为气候变化研究和溪流分析提供了一个很有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoVL: Automated streamflow separation for changing catchments and climate impact analysis
The separation of streamflow into fastflow and slowflow components has been historically ambiguous, with existing separation methods like the Lyne-Hollick (LH) algorithm facing challenges due to subjective parameter choices. Here, we address this issue by developing the AutoVL algorithm which objectively and automatically partitions streamflow for no parameter input. AutoVL uses iterative statistical models, including a Signal Reconstructor for fastflow and an autoregressive moving-average (ARMA) model for slowflow, to estimate key hydrologic parameters. The algorithm couples the two models to iteratively estimate these parameters and to accurately separate streamflow. When applied to the Harvey River, Dingo Road station data, AutoVL identified significant seasonal and long-term variations in hydrologic parameters, reflecting the possible influence of climate change altering the temporal dynamics of catchment responses. The algorithm highlighted strongly coupled changes in infiltration and decay rates from altered streamflow patterns, offering a clearer understanding of streamflow responses to climate change. This performance suggests that AutoVL provides a more reliable, objective, efficient, and standard method for streamflow separation compared to previous approaches, enabling more accurate and confident hydrological modeling. By providing objective, dynamic insights into catchment behavior, AutoVL offers a promising tool for climate change studies and streamflow analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信