印度气候变率模式与同期干旱和热浪的关联

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Ruhhee Tabbussum , Rajarshi Das Bhowmik , Pradeep Mujumdar
{"title":"印度气候变率模式与同期干旱和热浪的关联","authors":"Ruhhee Tabbussum ,&nbsp;Rajarshi Das Bhowmik ,&nbsp;Pradeep Mujumdar","doi":"10.1016/j.hydroa.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><div>The natural variability in the occurrence of concurrent extremes of droughts and heatwaves is frequently attributed to climate change and anthropogenic causes, disregarding its association with large-scale global teleconnections. This study explores this association by demonstrating how concurrent droughts and heatwaves (CDHW) in India are temporally and spatially connected to multiple global teleconnections (referred to as climate variability modes). Composite and wavelet coherence analyses are implemented for the univariate evaluation of droughts and heatwaves—measured using the standardized precipitation index (SPI) and the standardized heat index (SHI), respectively—in relation to the climate variability modes. Furthermore, an attribution table framework is employed to examine the extremal dependence of concurrent heatwaves and droughts in India on the climate variability modes during 1951–2018. The results exhibit a higher probability of CDHW events when they are preceded by a large-scale global teleconnection. Overall, the insights drawn from this study suggest the possibility of relying on the climate variability modes to issue season-ahead forecasts of CDHW.</div></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"26 ","pages":"Article 100196"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of climate variability modes with concurrent droughts and heatwaves in India\",\"authors\":\"Ruhhee Tabbussum ,&nbsp;Rajarshi Das Bhowmik ,&nbsp;Pradeep Mujumdar\",\"doi\":\"10.1016/j.hydroa.2024.100196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The natural variability in the occurrence of concurrent extremes of droughts and heatwaves is frequently attributed to climate change and anthropogenic causes, disregarding its association with large-scale global teleconnections. This study explores this association by demonstrating how concurrent droughts and heatwaves (CDHW) in India are temporally and spatially connected to multiple global teleconnections (referred to as climate variability modes). Composite and wavelet coherence analyses are implemented for the univariate evaluation of droughts and heatwaves—measured using the standardized precipitation index (SPI) and the standardized heat index (SHI), respectively—in relation to the climate variability modes. Furthermore, an attribution table framework is employed to examine the extremal dependence of concurrent heatwaves and droughts in India on the climate variability modes during 1951–2018. The results exhibit a higher probability of CDHW events when they are preceded by a large-scale global teleconnection. Overall, the insights drawn from this study suggest the possibility of relying on the climate variability modes to issue season-ahead forecasts of CDHW.</div></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"26 \",\"pages\":\"Article 100196\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915524000269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

同时发生的极端干旱和热浪的自然变率通常被归因于气候变化和人为原因,而忽略了其与大规模全球遥相关的关系。本研究通过展示印度同时发生的干旱和热浪(CDHW)如何在时间和空间上与多个全球遥相关(称为气候变率模式)相关联,探讨了这种关联。利用标准化降水指数(SPI)和标准化热指数(SHI)分别对干旱和热浪的单变量评估与气候变率模式的关系进行了复合和小波相干分析。此外,采用归因表框架分析了1951-2018年印度同期热浪和干旱对气候变率模态的极端依赖性。结果表明,在大规模全球遥相关之前发生CDHW事件的概率更高。总体而言,本研究得出的见解表明,依靠气候变率模式发布CDHW季前预报的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association of climate variability modes with concurrent droughts and heatwaves in India
The natural variability in the occurrence of concurrent extremes of droughts and heatwaves is frequently attributed to climate change and anthropogenic causes, disregarding its association with large-scale global teleconnections. This study explores this association by demonstrating how concurrent droughts and heatwaves (CDHW) in India are temporally and spatially connected to multiple global teleconnections (referred to as climate variability modes). Composite and wavelet coherence analyses are implemented for the univariate evaluation of droughts and heatwaves—measured using the standardized precipitation index (SPI) and the standardized heat index (SHI), respectively—in relation to the climate variability modes. Furthermore, an attribution table framework is employed to examine the extremal dependence of concurrent heatwaves and droughts in India on the climate variability modes during 1951–2018. The results exhibit a higher probability of CDHW events when they are preceded by a large-scale global teleconnection. Overall, the insights drawn from this study suggest the possibility of relying on the climate variability modes to issue season-ahead forecasts of CDHW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信