喹啉衍生物活性位点预测的机器学习

Jie Sun, Zi-Hao Li, Yi-Fei Yang, Shu-Yu Zhang
{"title":"喹啉衍生物活性位点预测的机器学习","authors":"Jie Sun,&nbsp;Zi-Hao Li,&nbsp;Yi-Fei Yang,&nbsp;Shu-Yu Zhang","doi":"10.1016/j.aichem.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><div>Privileged structures, like quinoline, have diverse biological activities, and their synthetic versatility makes them crucial for drug design. In traditional synthesis methods, the C-H functionalization of quinoline can be effectively achieved using different conditions, especially transition metal catalysis. Machine learning (ML) techniques enable rapid prediction of C-H functionalization, facilitating drug design and synthesis. In this study, a generalizable approach to predict site selectivity is accomplished by using artificial neural network (ANN), which is suitable for the site prediction of derivatives of quinoline. In an 80/10/10 training/validation/testing split of 2467 compounds, the model takes SMILES strings as input format and uses six quantum chemical descriptors to identify reactive site(s) of the compound. On the external validation set, 86 .5% of all molecules were correctly predicted. This model allows chemists to rapidly predict which site is more likely to produce electrophilic substitution reaction.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for active sites prediction of quinoline derivatives\",\"authors\":\"Jie Sun,&nbsp;Zi-Hao Li,&nbsp;Yi-Fei Yang,&nbsp;Shu-Yu Zhang\",\"doi\":\"10.1016/j.aichem.2024.100082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Privileged structures, like quinoline, have diverse biological activities, and their synthetic versatility makes them crucial for drug design. In traditional synthesis methods, the C-H functionalization of quinoline can be effectively achieved using different conditions, especially transition metal catalysis. Machine learning (ML) techniques enable rapid prediction of C-H functionalization, facilitating drug design and synthesis. In this study, a generalizable approach to predict site selectivity is accomplished by using artificial neural network (ANN), which is suitable for the site prediction of derivatives of quinoline. In an 80/10/10 training/validation/testing split of 2467 compounds, the model takes SMILES strings as input format and uses six quantum chemical descriptors to identify reactive site(s) of the compound. On the external validation set, 86 .5% of all molecules were correctly predicted. This model allows chemists to rapidly predict which site is more likely to produce electrophilic substitution reaction.</div></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"3 1\",\"pages\":\"Article 100082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294974772400040X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294974772400040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

像喹啉这样的特殊结构具有多种生物活性,它们的合成多功能性使它们对药物设计至关重要。在传统的合成方法中,喹啉的C-H功能化可以通过不同的条件,特别是过渡金属催化,有效地实现。机器学习(ML)技术能够快速预测C-H功能化,促进药物设计和合成。本研究利用人工神经网络(ANN)实现了一种适用于喹啉衍生物位点预测的泛化预测方法。在2467个化合物的80/10/10训练/验证/测试分割中,该模型以SMILES字符串作为输入格式,并使用6个量子化学描述符来识别化合物的活性位点。在外部验证集上,86 。5%的分子被正确预测。这个模型允许化学家快速预测哪个位点更可能产生亲电取代反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for active sites prediction of quinoline derivatives
Privileged structures, like quinoline, have diverse biological activities, and their synthetic versatility makes them crucial for drug design. In traditional synthesis methods, the C-H functionalization of quinoline can be effectively achieved using different conditions, especially transition metal catalysis. Machine learning (ML) techniques enable rapid prediction of C-H functionalization, facilitating drug design and synthesis. In this study, a generalizable approach to predict site selectivity is accomplished by using artificial neural network (ANN), which is suitable for the site prediction of derivatives of quinoline. In an 80/10/10 training/validation/testing split of 2467 compounds, the model takes SMILES strings as input format and uses six quantum chemical descriptors to identify reactive site(s) of the compound. On the external validation set, 86 .5% of all molecules were correctly predicted. This model allows chemists to rapidly predict which site is more likely to produce electrophilic substitution reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信