证明Quickhull精度猜想的Quickhull凸包算法的下界

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Michael T. Goodrich
{"title":"证明Quickhull精度猜想的Quickhull凸包算法的下界","authors":"Michael T. Goodrich","doi":"10.1016/j.ipl.2025.106558","DOIUrl":null,"url":null,"abstract":"<div><div>The <em><strong>Quickhull</strong></em> algorithm is a simple algorithm for constructing the convex hull of a set of <em>n</em> points. Quickhull is usually described for points in the plane, in which case it is defined as a divide-and-conquer algorithm, where one has a pair of points <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> such that <em>p</em> and <em>r</em> are on the convex hull, and one then finds the point, <em>q</em>, farthest from the line <span><math><mover><mrow><mi>p</mi><mi>r</mi></mrow><mo>‾</mo></mover></math></span>, which must also be on the convex hull, and then uses the triangle <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> to divide the remaining points and recursively solve the resulting subproblems. It is well-known that Quickhull has a worst-case running time of <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, but it runs much faster than this for some input distributions. In a highly cited paper, Barber, Dobkin, and Huhdanpaa conjecture that the Quickhull algorithm runs in worst-case <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span> time, where <em>h</em> is the size of the convex hull, when the input points have precision <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. In this paper, we give an explicit lower-bound construction that shows that, in general, the worst-case running time of the Quickhull algorithm is <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>h</mi><mo>)</mo></math></span>. Our lower bound proof also provides a counter-example to the Quickhull precision conjecture of Barber et al., in that we give an explicit construction of a set, <em>S</em>, of <em>n</em> points with precision <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> such that <em>h</em> is <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> but the worst-case running time of Quickhull on <em>S</em> is <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>h</mi><mo>)</mo></math></span>, not <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"189 ","pages":"Article 106558"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for the Quickhull convex hull algorithm that disproves the Quickhull precision conjecture\",\"authors\":\"Michael T. Goodrich\",\"doi\":\"10.1016/j.ipl.2025.106558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em><strong>Quickhull</strong></em> algorithm is a simple algorithm for constructing the convex hull of a set of <em>n</em> points. Quickhull is usually described for points in the plane, in which case it is defined as a divide-and-conquer algorithm, where one has a pair of points <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> such that <em>p</em> and <em>r</em> are on the convex hull, and one then finds the point, <em>q</em>, farthest from the line <span><math><mover><mrow><mi>p</mi><mi>r</mi></mrow><mo>‾</mo></mover></math></span>, which must also be on the convex hull, and then uses the triangle <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> to divide the remaining points and recursively solve the resulting subproblems. It is well-known that Quickhull has a worst-case running time of <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, but it runs much faster than this for some input distributions. In a highly cited paper, Barber, Dobkin, and Huhdanpaa conjecture that the Quickhull algorithm runs in worst-case <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span> time, where <em>h</em> is the size of the convex hull, when the input points have precision <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>. In this paper, we give an explicit lower-bound construction that shows that, in general, the worst-case running time of the Quickhull algorithm is <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>h</mi><mo>)</mo></math></span>. Our lower bound proof also provides a counter-example to the Quickhull precision conjecture of Barber et al., in that we give an explicit construction of a set, <em>S</em>, of <em>n</em> points with precision <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> such that <em>h</em> is <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> but the worst-case running time of Quickhull on <em>S</em> is <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>h</mi><mo>)</mo></math></span>, not <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"189 \",\"pages\":\"Article 106558\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002001902500002X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002001902500002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

快速包算法是一种构造n个点的凸包的简单算法。快速壳通常被描述为平面上的点,在这种情况下,它被定义为分治算法,其中有一对点(p,r),使得p和r都在凸壳上,然后找到距离直线pr最远的点q,它也必须在凸壳上,然后用三角形(p,q,r)来划分剩下的点,递归地解决所得到的子问题。众所周知,Quickhull的最坏情况运行时间为Θ(n2),但对于某些输入分布,它的运行速度要快得多。在一篇被大量引用的论文中,Barber、Dobkin和Huhdanpaa推测,当输入点的精度为O(log log n)时,Quickhull算法在最坏情况下运行O(nlog (h))时间内,h是凸包的大小。在本文中,我们给出了一个显式的下界构造,表明一般情况下,Quickhull算法的最坏情况运行时间为Θ(nh)。我们的下界证明也为Barber等人的Quickhull精度猜想提供了一个反例,因为我们给出了一个明确的结构,S, n个点的精度为O(log ln n),使得h为O(log ln n),但Quickhull在S上的最坏情况运行时间为Θ(nh),而不是O(nlog ln h)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for the Quickhull convex hull algorithm that disproves the Quickhull precision conjecture
The Quickhull algorithm is a simple algorithm for constructing the convex hull of a set of n points. Quickhull is usually described for points in the plane, in which case it is defined as a divide-and-conquer algorithm, where one has a pair of points (p,r) such that p and r are on the convex hull, and one then finds the point, q, farthest from the line pr, which must also be on the convex hull, and then uses the triangle (p,q,r) to divide the remaining points and recursively solve the resulting subproblems. It is well-known that Quickhull has a worst-case running time of Θ(n2), but it runs much faster than this for some input distributions. In a highly cited paper, Barber, Dobkin, and Huhdanpaa conjecture that the Quickhull algorithm runs in worst-case O(nlogh) time, where h is the size of the convex hull, when the input points have precision O(logn). In this paper, we give an explicit lower-bound construction that shows that, in general, the worst-case running time of the Quickhull algorithm is Θ(nh). Our lower bound proof also provides a counter-example to the Quickhull precision conjecture of Barber et al., in that we give an explicit construction of a set, S, of n points with precision O(logn) such that h is O(logn) but the worst-case running time of Quickhull on S is Θ(nh), not O(nlogh).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信