以最优行数和略少的随机性满足限制等距性质

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shravas Rao
{"title":"以最优行数和略少的随机性满足限制等距性质","authors":"Shravas Rao","doi":"10.1016/j.ipl.2024.106553","DOIUrl":null,"url":null,"abstract":"<div><div>A matrix <span><math><mi>Φ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>Q</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span> satisfies the restricted isometry property if <span><math><msubsup><mrow><mo>‖</mo><mi>Φ</mi><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is approximately equal to <span><math><msubsup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> for all <em>k</em>-sparse vectors <em>x</em>. We give a construction of RIP matrices with the optimal <span><math><mi>Q</mi><mo>=</mo><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>N</mi><mo>/</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> rows using <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>N</mi><mo>/</mo><mi>k</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to <em>ε</em>-biased distributions.</div></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"189 ","pages":"Article 106553"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satisfying the restricted isometry property with the optimal number of rows and slightly less randomness\",\"authors\":\"Shravas Rao\",\"doi\":\"10.1016/j.ipl.2024.106553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A matrix <span><math><mi>Φ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>Q</mi><mo>×</mo><mi>N</mi></mrow></msup></math></span> satisfies the restricted isometry property if <span><math><msubsup><mrow><mo>‖</mo><mi>Φ</mi><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is approximately equal to <span><math><msubsup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> for all <em>k</em>-sparse vectors <em>x</em>. We give a construction of RIP matrices with the optimal <span><math><mi>Q</mi><mo>=</mo><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>N</mi><mo>/</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> rows using <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>N</mi><mo>/</mo><mi>k</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to <em>ε</em>-biased distributions.</div></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"189 \",\"pages\":\"Article 106553\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000838\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000838","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于所有k-稀疏向量x,如果‖Φx‖22近似等于‖x‖22,则矩阵Φ∈RQ×N满足受限等距性质。我们使用O(klog (N/k)) log (k))位的随机性给出了具有最优Q=O(klog (N/k))行的RIP矩阵的构造。主要的技术成分是将汉森-赖特不等式推广到ε偏分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satisfying the restricted isometry property with the optimal number of rows and slightly less randomness
A matrix ΦRQ×N satisfies the restricted isometry property if Φx22 is approximately equal to x22 for all k-sparse vectors x. We give a construction of RIP matrices with the optimal Q=O(klog(N/k)) rows using O(klog(N/k)log(k)) bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to ε-biased distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信