基于区块链集成的供应链效率优化贝叶斯最佳-最差方法

Azam Modares , Vahideh Bafandegan Emroozi , Pardis Roozkhosh , Azade Modares
{"title":"基于区块链集成的供应链效率优化贝叶斯最佳-最差方法","authors":"Azam Modares ,&nbsp;Vahideh Bafandegan Emroozi ,&nbsp;Pardis Roozkhosh ,&nbsp;Azade Modares","doi":"10.1016/j.sca.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><div>Supplier selection is a complex Multi-Criteria Decision-Making (MCDM) problem where decision-maker (DM) preferences heavily influence decision criteria and outcomes. Suitable suppliers capable of meeting performance criteria are central to successful Blockchain Technology (BT) implementation. Numerous qualitative factors influence blockchain adoption within organizations, particularly in the communication between retailers and suppliers via Blockchain, where qualitative uncertainties abound. This study aims to develop a robust system within a probabilistic and fuzzy framework to integrate DMs’ judgments amidst uncertainty effectively. Leveraging the Bayesian best-worst method (BWM), optimal weights for evaluating supplier criteria are determined. This method employs Markov-chain Monte Carlo (MCMC) to calculate the probability of preferring one criterion over another, facilitating confidence level elucidation between criterion pairs and enhancing criteria rankings. Supplier ranking is performed using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The efficacy of the proposed approach is demonstrated through a case study utilizing real data from the railway supply chain. Results indicate the model’s effectiveness in optimizing supplier selection and enhancing supply chain performance.</div></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"9 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian best-worst approach with blockchain integration for optimizing supply chain efficiency through supplier selection\",\"authors\":\"Azam Modares ,&nbsp;Vahideh Bafandegan Emroozi ,&nbsp;Pardis Roozkhosh ,&nbsp;Azade Modares\",\"doi\":\"10.1016/j.sca.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Supplier selection is a complex Multi-Criteria Decision-Making (MCDM) problem where decision-maker (DM) preferences heavily influence decision criteria and outcomes. Suitable suppliers capable of meeting performance criteria are central to successful Blockchain Technology (BT) implementation. Numerous qualitative factors influence blockchain adoption within organizations, particularly in the communication between retailers and suppliers via Blockchain, where qualitative uncertainties abound. This study aims to develop a robust system within a probabilistic and fuzzy framework to integrate DMs’ judgments amidst uncertainty effectively. Leveraging the Bayesian best-worst method (BWM), optimal weights for evaluating supplier criteria are determined. This method employs Markov-chain Monte Carlo (MCMC) to calculate the probability of preferring one criterion over another, facilitating confidence level elucidation between criterion pairs and enhancing criteria rankings. Supplier ranking is performed using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The efficacy of the proposed approach is demonstrated through a case study utilizing real data from the railway supply chain. Results indicate the model’s effectiveness in optimizing supplier selection and enhancing supply chain performance.</div></div>\",\"PeriodicalId\":101186,\"journal\":{\"name\":\"Supply Chain Analytics\",\"volume\":\"9 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supply Chain Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949863524000438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863524000438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

供应商选择是一个复杂的多准则决策(MCDM)问题,其中决策者的偏好严重影响决策标准和结果。合适的供应商能够满足性能标准是区块链技术(BT)成功实施的核心。许多定性因素影响着组织内部区块链的采用,特别是在零售商和供应商之间通过区块链进行沟通时,其中存在大量定性不确定性。本研究旨在建立一个稳健的系统,在概率和模糊的框架内,有效地整合决策者在不确定性中的判断。利用贝叶斯最佳-最差方法(BWM),确定了评估供应商标准的最优权重。该方法采用马尔可夫链蒙特卡罗(MCMC)来计算一个标准优于另一个标准的概率,促进了标准对之间的置信度阐明,提高了标准排名。采用模糊TOPSIS法对供应商进行排序。利用铁路供应链的实际数据,通过一个案例研究证明了所提出方法的有效性。结果表明,该模型在优化供应商选择和提高供应链绩效方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian best-worst approach with blockchain integration for optimizing supply chain efficiency through supplier selection
Supplier selection is a complex Multi-Criteria Decision-Making (MCDM) problem where decision-maker (DM) preferences heavily influence decision criteria and outcomes. Suitable suppliers capable of meeting performance criteria are central to successful Blockchain Technology (BT) implementation. Numerous qualitative factors influence blockchain adoption within organizations, particularly in the communication between retailers and suppliers via Blockchain, where qualitative uncertainties abound. This study aims to develop a robust system within a probabilistic and fuzzy framework to integrate DMs’ judgments amidst uncertainty effectively. Leveraging the Bayesian best-worst method (BWM), optimal weights for evaluating supplier criteria are determined. This method employs Markov-chain Monte Carlo (MCMC) to calculate the probability of preferring one criterion over another, facilitating confidence level elucidation between criterion pairs and enhancing criteria rankings. Supplier ranking is performed using the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The efficacy of the proposed approach is demonstrated through a case study utilizing real data from the railway supply chain. Results indicate the model’s effectiveness in optimizing supplier selection and enhancing supply chain performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信