在现代流处理框架中对流处理操作符的延迟感知放置

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Raphael Ecker , Vasileios Karagiannis , Michael Sober , Stefan Schulte
{"title":"在现代流处理框架中对流处理操作符的延迟感知放置","authors":"Raphael Ecker ,&nbsp;Vasileios Karagiannis ,&nbsp;Michael Sober ,&nbsp;Stefan Schulte","doi":"10.1016/j.jpdc.2025.105041","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of the Internet of Things has substantially increased the number of interconnected devices at the edge of the network. As a result, a large number of computations are now distributed in the compute continuum, spanning from the edge to the cloud, generating vast amounts of data. Stream processing is typically employed to process this data in near real-time due to its efficiency in handling continuous streams of information in a scalable manner. However, many stream processing approaches do not consider the underlying network devices of the compute continuum as candidate resources for processing data. Moreover, many existing works do not consider the incurred network latency of performing computations on multiple devices in a distributed way. To avoid this, we formulate an optimization problem for utilizing the complete compute continuum resources and design heuristics to solve this problem efficiently. Furthermore, we integrate our heuristics into Apache Storm and perform experiments that show latency- and throughput-related benefits compared to alternatives.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"199 ","pages":"Article 105041"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latency-aware placement of stream processing operators in modern-day stream processing frameworks\",\"authors\":\"Raphael Ecker ,&nbsp;Vasileios Karagiannis ,&nbsp;Michael Sober ,&nbsp;Stefan Schulte\",\"doi\":\"10.1016/j.jpdc.2025.105041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rise of the Internet of Things has substantially increased the number of interconnected devices at the edge of the network. As a result, a large number of computations are now distributed in the compute continuum, spanning from the edge to the cloud, generating vast amounts of data. Stream processing is typically employed to process this data in near real-time due to its efficiency in handling continuous streams of information in a scalable manner. However, many stream processing approaches do not consider the underlying network devices of the compute continuum as candidate resources for processing data. Moreover, many existing works do not consider the incurred network latency of performing computations on multiple devices in a distributed way. To avoid this, we formulate an optimization problem for utilizing the complete compute continuum resources and design heuristics to solve this problem efficiently. Furthermore, we integrate our heuristics into Apache Storm and perform experiments that show latency- and throughput-related benefits compared to alternatives.</div></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"199 \",\"pages\":\"Article 105041\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731525000085\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000085","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

物联网的兴起大大增加了网络边缘互联设备的数量。因此,现在大量的计算分布在计算连续体中,从边缘到云,产生大量的数据。流处理通常用于近乎实时地处理这些数据,因为它在以可扩展的方式处理连续信息流方面效率很高。然而,许多流处理方法不考虑计算连续体的底层网络设备作为处理数据的候选资源。此外,许多现有的工作没有考虑到以分布式方式在多个设备上执行计算所产生的网络延迟。为了避免这种情况,我们制定了一个利用完整计算连续体资源的优化问题,并利用设计启发式来有效地解决这个问题。此外,我们将我们的启发式方法集成到Apache Storm中,并执行实验,显示与替代方案相比,延迟和吞吐量相关的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latency-aware placement of stream processing operators in modern-day stream processing frameworks
The rise of the Internet of Things has substantially increased the number of interconnected devices at the edge of the network. As a result, a large number of computations are now distributed in the compute continuum, spanning from the edge to the cloud, generating vast amounts of data. Stream processing is typically employed to process this data in near real-time due to its efficiency in handling continuous streams of information in a scalable manner. However, many stream processing approaches do not consider the underlying network devices of the compute continuum as candidate resources for processing data. Moreover, many existing works do not consider the incurred network latency of performing computations on multiple devices in a distributed way. To avoid this, we formulate an optimization problem for utilizing the complete compute continuum resources and design heuristics to solve this problem efficiently. Furthermore, we integrate our heuristics into Apache Storm and perform experiments that show latency- and throughput-related benefits compared to alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信