具有点向控制约束的椭圆型Neumann边界控制问题的有限元误差分析

IF 1.4 Q2 MATHEMATICS, APPLIED
Susanne C. Brenner, Li-Yeng Sung
{"title":"具有点向控制约束的椭圆型Neumann边界控制问题的有限元误差分析","authors":"Susanne C. Brenner,&nbsp;Li-Yeng Sung","doi":"10.1016/j.rinam.2025.100544","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100544"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints\",\"authors\":\"Susanne C. Brenner,&nbsp;Li-Yeng Sung\",\"doi\":\"10.1016/j.rinam.2025.100544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100544\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对一类具有Neumann边界控制和点向控制约束的线性二次椭圆型最优控制问题,提出了一种新的有限元误差分析方法。当椭圆算子中的系数为光滑时,该方法可以应用于标准有限元方法;当系数为粗糙时,该方法也可以应用于多尺度有限元方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints
We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信