{"title":"具有点向控制约束的椭圆型Neumann边界控制问题的有限元误差分析","authors":"Susanne C. Brenner, Li-Yeng Sung","doi":"10.1016/j.rinam.2025.100544","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100544"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints\",\"authors\":\"Susanne C. Brenner, Li-Yeng Sung\",\"doi\":\"10.1016/j.rinam.2025.100544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100544\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new error analysis for finite element methods for elliptic Neumann boundary control problems with pointwise control constraints
We present a new error analysis for finite element methods for a linear-quadratic elliptic optimal control problem with Neumann boundary control and pointwise control constraints. It can be applied to standard finite element methods when the coefficients in the elliptic operator are smooth and also to multiscale finite element methods when the coefficients are rough.