第二Pappus-Guldin定理的推广

IF 1.4 Q2 MATHEMATICS, APPLIED
Harald Schmid
{"title":"第二Pappus-Guldin定理的推广","authors":"Harald Schmid","doi":"10.1016/j.rinam.2025.100537","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the question of how to calculate the volume of a body in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when it is cut into slices perpendicular to a given curve. The answer is provided by a formula that can be considered as a generalized version of the second Pappus–Guldin theorem. It turns out that the computation becomes very simple if the curve passes directly through the centroids of the perpendicular cross-sections. In this context, the question arises whether a curve with this centroid property exists. We investigate this problem for a convex body <span><math><mi>K</mi></math></span> by using the volume distance and certain features of the so-called floating bodies of <span><math><mi>K</mi></math></span>. As an example, we further determine the non-trivial centroid curves of a triaxial ellipsoid, and finally we apply our results to derive a rather simple formula for determining the centroid of a bent rod.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100537"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the second Pappus–Guldin theorem\",\"authors\":\"Harald Schmid\",\"doi\":\"10.1016/j.rinam.2025.100537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with the question of how to calculate the volume of a body in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> when it is cut into slices perpendicular to a given curve. The answer is provided by a formula that can be considered as a generalized version of the second Pappus–Guldin theorem. It turns out that the computation becomes very simple if the curve passes directly through the centroids of the perpendicular cross-sections. In this context, the question arises whether a curve with this centroid property exists. We investigate this problem for a convex body <span><math><mi>K</mi></math></span> by using the volume distance and certain features of the so-called floating bodies of <span><math><mi>K</mi></math></span>. As an example, we further determine the non-trivial centroid curves of a triaxial ellipsoid, and finally we apply our results to derive a rather simple formula for determining the centroid of a bent rod.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100537\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当物体在R3空间中被切成垂直于给定曲线的薄片时,如何计算其体积的问题。答案是由一个公式提供的,这个公式可以被认为是第二个帕普斯-戈尔丁定理的推广版本。结果表明,如果曲线直接穿过垂直截面的质心,计算就变得非常简单。在这种情况下,出现了具有这种质心性质的曲线是否存在的问题。我们利用凸体K的体积距离和所谓K的浮体的某些特征来研究这个问题。作为一个例子,我们进一步确定了三轴椭球体的非平凡质心曲线,最后我们应用我们的结果推导了一个相当简单的公式来确定弯曲杆的质心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the second Pappus–Guldin theorem
This paper deals with the question of how to calculate the volume of a body in R3 when it is cut into slices perpendicular to a given curve. The answer is provided by a formula that can be considered as a generalized version of the second Pappus–Guldin theorem. It turns out that the computation becomes very simple if the curve passes directly through the centroids of the perpendicular cross-sections. In this context, the question arises whether a curve with this centroid property exists. We investigate this problem for a convex body K by using the volume distance and certain features of the so-called floating bodies of K. As an example, we further determine the non-trivial centroid curves of a triaxial ellipsoid, and finally we apply our results to derive a rather simple formula for determining the centroid of a bent rod.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信