结合BDF2-θ的两网格混合有限元法求解二维非线性分数阶伪双曲型波动方程

IF 1.4 Q2 MATHEMATICS, APPLIED
Yan Wang, Yining Yang, Nian Wang, Hong Li, Yang Liu
{"title":"结合BDF2-θ的两网格混合有限元法求解二维非线性分数阶伪双曲型波动方程","authors":"Yan Wang,&nbsp;Yining Yang,&nbsp;Nian Wang,&nbsp;Hong Li,&nbsp;Yang Liu","doi":"10.1016/j.rinam.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a fast two-grid mixed finite element (T-GMFE) algorithm based on a time second-order discrete scheme with parameter <span><math><mi>θ</mi></math></span> is considered to numerically solve a class of two-dimensional nonlinear fractional pseudo-hyperbolic wave models. The weighted and shifted Grünwald difference (WSGD) formula is used to approximate the fractional time derivative at time <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>θ</mi></mrow></msub></math></span>, and the spatial direction is approximated by a two-grid <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Galerkin MFE method. The error estimates in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the fully discrete T-GMFE system are proved. Further, a modified T-GMFE scheme is proposed and the optimal error results are provided. Finally, computing results show the presented T-GMFE method can save computing time and improve the computational efficiency.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100530"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-grid mixed finite element method combined with the BDF2-θ for a two-dimensional nonlinear fractional pseudo-hyperbolic wave equation\",\"authors\":\"Yan Wang,&nbsp;Yining Yang,&nbsp;Nian Wang,&nbsp;Hong Li,&nbsp;Yang Liu\",\"doi\":\"10.1016/j.rinam.2024.100530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, a fast two-grid mixed finite element (T-GMFE) algorithm based on a time second-order discrete scheme with parameter <span><math><mi>θ</mi></math></span> is considered to numerically solve a class of two-dimensional nonlinear fractional pseudo-hyperbolic wave models. The weighted and shifted Grünwald difference (WSGD) formula is used to approximate the fractional time derivative at time <span><math><msub><mrow><mi>t</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>θ</mi></mrow></msub></math></span>, and the spatial direction is approximated by a two-grid <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-Galerkin MFE method. The error estimates in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the fully discrete T-GMFE system are proved. Further, a modified T-GMFE scheme is proposed and the optimal error results are provided. Finally, computing results show the presented T-GMFE method can save computing time and improve the computational efficiency.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100530\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424001006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一种基于时间二阶离散格式的快速两网格混合有限元(T-GMFE)算法,用于数值求解一类二维非线性分数阶伪双曲波模型。采用加权移位的grnwald差分(WSGD)公式来近似tn−θ时刻的分数阶时间导数,采用双网格H1-Galerkin MFE方法来近似空间方向。证明了完全离散T-GMFE系统L2范数和h1范数的误差估计。在此基础上,提出了一种改进的T-GMFE格式,并给出了最优误差结果。最后,计算结果表明,所提出的T-GMFE方法可以节省计算时间,提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-grid mixed finite element method combined with the BDF2-θ for a two-dimensional nonlinear fractional pseudo-hyperbolic wave equation
In this article, a fast two-grid mixed finite element (T-GMFE) algorithm based on a time second-order discrete scheme with parameter θ is considered to numerically solve a class of two-dimensional nonlinear fractional pseudo-hyperbolic wave models. The weighted and shifted Grünwald difference (WSGD) formula is used to approximate the fractional time derivative at time tnθ, and the spatial direction is approximated by a two-grid H1-Galerkin MFE method. The error estimates in both L2 and H1-norm for the fully discrete T-GMFE system are proved. Further, a modified T-GMFE scheme is proposed and the optimal error results are provided. Finally, computing results show the presented T-GMFE method can save computing time and improve the computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信