给出了具有图的扩展b度量空间中各种收缩的不动点结果

IF 1.4 Q2 MATHEMATICS, APPLIED
Neeraj Kumar , Seema Mehra , Dania Santina , Nabil Mlaiki
{"title":"给出了具有图的扩展b度量空间中各种收缩的不动点结果","authors":"Neeraj Kumar ,&nbsp;Seema Mehra ,&nbsp;Dania Santina ,&nbsp;Nabil Mlaiki","doi":"10.1016/j.rinam.2024.100524","DOIUrl":null,"url":null,"abstract":"<div><div>Contraction type mappings are crucial for understanding fixed point theory under specific conditions. We propose generalized (Boyd–Wong) type A <strong>F</strong> and (S - N) rational type contractions in an enlarged b-metric space which are represented by a graphically. Also, we gave a contrast of generalized (Boyd–Wong) type A <strong>F</strong> — contraction in 2D and 3D. We use appropriate illustrations to demonstrate the validity and primacy of our outcomes. Additionally, we use our derived conclusions to solve the Fredholm integral problem.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100524"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some fixed point results concerning various contractions in extended b- metric space endowed with a graph\",\"authors\":\"Neeraj Kumar ,&nbsp;Seema Mehra ,&nbsp;Dania Santina ,&nbsp;Nabil Mlaiki\",\"doi\":\"10.1016/j.rinam.2024.100524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Contraction type mappings are crucial for understanding fixed point theory under specific conditions. We propose generalized (Boyd–Wong) type A <strong>F</strong> and (S - N) rational type contractions in an enlarged b-metric space which are represented by a graphically. Also, we gave a contrast of generalized (Boyd–Wong) type A <strong>F</strong> — contraction in 2D and 3D. We use appropriate illustrations to demonstrate the validity and primacy of our outcomes. Additionally, we use our derived conclusions to solve the Fredholm integral problem.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100524\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

收缩类型映射对于理解特定条件下的不动点理论至关重要。在一个扩大的b-度量空间中,我们提出了广义(Boyd-Wong)型A - F和(S - N)有理型收缩,它们用图形表示。同时,我们还给出广义(Boyd-Wong)型a - F -收缩在二维和三维上的对比。我们使用适当的插图来证明我们的结果的有效性和首要性。此外,我们还利用所得结论求解了Fredholm积分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some fixed point results concerning various contractions in extended b- metric space endowed with a graph
Contraction type mappings are crucial for understanding fixed point theory under specific conditions. We propose generalized (Boyd–Wong) type A F and (S - N) rational type contractions in an enlarged b-metric space which are represented by a graphically. Also, we gave a contrast of generalized (Boyd–Wong) type A F — contraction in 2D and 3D. We use appropriate illustrations to demonstrate the validity and primacy of our outcomes. Additionally, we use our derived conclusions to solve the Fredholm integral problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信