{"title":"一类加权拟线性椭圆方程多个弱解的存在性","authors":"Khaled Kefi","doi":"10.1016/j.rinam.2024.100536","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explore the existence of solutions to certain quasilinear degenerate elliptic equations that involve Hardy singular coefficients. Using variational techniques and critical point theorems, we establish new criteria for the existence of at least three weak solutions, under the assumption that the nonlinearity meets appropriate conditions.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100536"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of multiple weak solutions to a weighted quasilinear elliptic equation\",\"authors\":\"Khaled Kefi\",\"doi\":\"10.1016/j.rinam.2024.100536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we explore the existence of solutions to certain quasilinear degenerate elliptic equations that involve Hardy singular coefficients. Using variational techniques and critical point theorems, we establish new criteria for the existence of at least three weak solutions, under the assumption that the nonlinearity meets appropriate conditions.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100536\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424001067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence of multiple weak solutions to a weighted quasilinear elliptic equation
In this study, we explore the existence of solutions to certain quasilinear degenerate elliptic equations that involve Hardy singular coefficients. Using variational techniques and critical point theorems, we establish new criteria for the existence of at least three weak solutions, under the assumption that the nonlinearity meets appropriate conditions.