M. Hosseininia , M.H. Heydari , D. Baleanu , M. Bayram
{"title":"基于经典/分段切比雪夫基数函数的多维分数阶瑞利-斯托克斯方程混合求解方法","authors":"M. Hosseininia , M.H. Heydari , D. Baleanu , M. Bayram","doi":"10.1016/j.rinam.2025.100541","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a numerical hybrid strategy for deriving approximate solutions to the one- and two-dimensional fractional Rayleigh–Stokes equations involving the Caputo derivative. This scheme mutually utilizes the classical and piecewise Chebyshev cardinal functions as basis functions. To this end, the operational matrices of the ordinary integral and fractional derivative of the piecewise Chebyshev cardinal functions, along with the ordinary and partial derivatives of the one- and two-variable Chebyshev cardinal functions, are derived. To create the desired approach by considering a hybrid expansion of the solution of the problem using the Chebyshev cardinal functions (for the spatial variable) and piecewise Chebyshev cardinal functions (for the temporal variable), and employing the aforementioned operational matrices, solving the problem under consideration turns into solving an algebraic system of linear equations. The convergence analysis of the established method is examined both theoretically and numerically. The accuracy and validity of the developed scheme are examined by solving several numerical examples.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100541"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations\",\"authors\":\"M. Hosseininia , M.H. Heydari , D. Baleanu , M. Bayram\",\"doi\":\"10.1016/j.rinam.2025.100541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a numerical hybrid strategy for deriving approximate solutions to the one- and two-dimensional fractional Rayleigh–Stokes equations involving the Caputo derivative. This scheme mutually utilizes the classical and piecewise Chebyshev cardinal functions as basis functions. To this end, the operational matrices of the ordinary integral and fractional derivative of the piecewise Chebyshev cardinal functions, along with the ordinary and partial derivatives of the one- and two-variable Chebyshev cardinal functions, are derived. To create the desired approach by considering a hybrid expansion of the solution of the problem using the Chebyshev cardinal functions (for the spatial variable) and piecewise Chebyshev cardinal functions (for the temporal variable), and employing the aforementioned operational matrices, solving the problem under consideration turns into solving an algebraic system of linear equations. The convergence analysis of the established method is examined both theoretically and numerically. The accuracy and validity of the developed scheme are examined by solving several numerical examples.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100541\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations
This study presents a numerical hybrid strategy for deriving approximate solutions to the one- and two-dimensional fractional Rayleigh–Stokes equations involving the Caputo derivative. This scheme mutually utilizes the classical and piecewise Chebyshev cardinal functions as basis functions. To this end, the operational matrices of the ordinary integral and fractional derivative of the piecewise Chebyshev cardinal functions, along with the ordinary and partial derivatives of the one- and two-variable Chebyshev cardinal functions, are derived. To create the desired approach by considering a hybrid expansion of the solution of the problem using the Chebyshev cardinal functions (for the spatial variable) and piecewise Chebyshev cardinal functions (for the temporal variable), and employing the aforementioned operational matrices, solving the problem under consideration turns into solving an algebraic system of linear equations. The convergence analysis of the established method is examined both theoretically and numerically. The accuracy and validity of the developed scheme are examined by solving several numerical examples.