Meng-Jie Chang, Xin Li, Jun Liu, Ge Bai, Qiu-Yu Hu
{"title":"甲酰胺作为水玻璃凝胶合成二氧化硅气凝胶整体体的新型催化剂","authors":"Meng-Jie Chang, Xin Li, Jun Liu, Ge Bai, Qiu-Yu Hu","doi":"10.1016/j.solidstatesciences.2024.107820","DOIUrl":null,"url":null,"abstract":"<div><div>Water glass (WG)-based aerogels (WAGs) are challenged with requirement of acid catalyst and poor mechanical property. In this work, we have developed a novel formamide (FA) as catalyst for gelation of WG at alkaline condition to prepare WAG monolith under atmospheric pressure drying (APD). The FA serves both as the catalyst by hydrolyzing product formic acid and drying control agent. The effect of the gelation temperature, FA dosage, and WG concentration on the gelation time, density, shrinkage and microstructure of the aerogels were analyzed. The optimum WAG monolith shows a low shrinkage of 20 % and density of 0.165 g cm<sup>−3</sup>, as well as large specific surface area of 229.4 m<sup>2</sup> g<sup>−1</sup> and superhydrophobic surface. The connected nanoparticle into three-dimensional network endows the WAG monolith with good mechanical property. Due to the low-cost, easy fabrication process and free usage of acids, the method expands the synthesis of aerogel monolith.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"160 ","pages":"Article 107820"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formamide as novel catalyst for the gelation of water glass to synthesize silica aerogel monolith\",\"authors\":\"Meng-Jie Chang, Xin Li, Jun Liu, Ge Bai, Qiu-Yu Hu\",\"doi\":\"10.1016/j.solidstatesciences.2024.107820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water glass (WG)-based aerogels (WAGs) are challenged with requirement of acid catalyst and poor mechanical property. In this work, we have developed a novel formamide (FA) as catalyst for gelation of WG at alkaline condition to prepare WAG monolith under atmospheric pressure drying (APD). The FA serves both as the catalyst by hydrolyzing product formic acid and drying control agent. The effect of the gelation temperature, FA dosage, and WG concentration on the gelation time, density, shrinkage and microstructure of the aerogels were analyzed. The optimum WAG monolith shows a low shrinkage of 20 % and density of 0.165 g cm<sup>−3</sup>, as well as large specific surface area of 229.4 m<sup>2</sup> g<sup>−1</sup> and superhydrophobic surface. The connected nanoparticle into three-dimensional network endows the WAG monolith with good mechanical property. Due to the low-cost, easy fabrication process and free usage of acids, the method expands the synthesis of aerogel monolith.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"160 \",\"pages\":\"Article 107820\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824003856\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824003856","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
水玻璃基气凝胶对酸性催化剂要求高,力学性能差。在本工作中,我们开发了一种新型甲酰胺(FA)作为催化剂,在碱性条件下凝胶化WG,在常压干燥(APD)下制备WAG单体。FA既可作为水解产物甲酸的催化剂,又可作为干燥控制剂。分析了凝胶温度、FA用量和WG浓度对凝胶时间、密度、收缩率和微观结构的影响。最佳的WAG单体收缩率为20%,密度为0.165 g cm−3,比表面积为229.4 m2 g−1,具有超疏水表面。纳米颗粒连接成三维网络,使WAG整体具有良好的力学性能。该方法具有成本低、制备工艺简单、酸的自由使用等优点,扩大了气凝胶整体体的合成范围。
Formamide as novel catalyst for the gelation of water glass to synthesize silica aerogel monolith
Water glass (WG)-based aerogels (WAGs) are challenged with requirement of acid catalyst and poor mechanical property. In this work, we have developed a novel formamide (FA) as catalyst for gelation of WG at alkaline condition to prepare WAG monolith under atmospheric pressure drying (APD). The FA serves both as the catalyst by hydrolyzing product formic acid and drying control agent. The effect of the gelation temperature, FA dosage, and WG concentration on the gelation time, density, shrinkage and microstructure of the aerogels were analyzed. The optimum WAG monolith shows a low shrinkage of 20 % and density of 0.165 g cm−3, as well as large specific surface area of 229.4 m2 g−1 and superhydrophobic surface. The connected nanoparticle into three-dimensional network endows the WAG monolith with good mechanical property. Due to the low-cost, easy fabrication process and free usage of acids, the method expands the synthesis of aerogel monolith.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.