源相机识别-我们有黄金标准吗?

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Samantha Klier, Harald Baier
{"title":"源相机识别-我们有黄金标准吗?","authors":"Samantha Klier,&nbsp;Harald Baier","doi":"10.1016/j.fsidi.2024.301858","DOIUrl":null,"url":null,"abstract":"<div><div>Source Camera Identification (SCI) is vital in digital forensics, yet its most prominent approach, Sensor Pattern Noise (SPN), faces new challenges in the era of modern devices and vast media datasets. This paper introduces the Source Camera Target Model (SCTM) to classify SCI approaches and formally defines three core problem classes: Verification, Identification, and Exploration. For each, we outline key evaluation metrics tailored to practical use cases. Applying this framework, we critically assess recognized SCI methods and their alignment with contemporary needs. Our findings expose significant gaps in scalability, efficiency, and relevance to modern imaging pipelines, challenging the notion of SPN as a gold standard. Finally, we provide a roadmap for advancing SCI research to address these limitations and adapt to evolving technological landscapes.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301858"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source Camera Identification - Do we have a gold standard?\",\"authors\":\"Samantha Klier,&nbsp;Harald Baier\",\"doi\":\"10.1016/j.fsidi.2024.301858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Source Camera Identification (SCI) is vital in digital forensics, yet its most prominent approach, Sensor Pattern Noise (SPN), faces new challenges in the era of modern devices and vast media datasets. This paper introduces the Source Camera Target Model (SCTM) to classify SCI approaches and formally defines three core problem classes: Verification, Identification, and Exploration. For each, we outline key evaluation metrics tailored to practical use cases. Applying this framework, we critically assess recognized SCI methods and their alignment with contemporary needs. Our findings expose significant gaps in scalability, efficiency, and relevance to modern imaging pipelines, challenging the notion of SPN as a gold standard. Finally, we provide a roadmap for advancing SCI research to address these limitations and adapt to evolving technological landscapes.</div></div>\",\"PeriodicalId\":48481,\"journal\":{\"name\":\"Forensic Science International-Digital Investigation\",\"volume\":\"52 \",\"pages\":\"Article 301858\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Digital Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666281724001859\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724001859","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

源相机识别(SCI)在数字取证中至关重要,但其最突出的方法,传感器模式噪声(SPN),在现代设备和庞大媒体数据集的时代面临着新的挑战。本文引入源相机目标模型(SCTM)对SCI方法进行分类,并正式定义了三个核心问题类别:验证、识别和探索。对于每一个,我们都概述了针对实际用例量身定制的关键评估量度。运用这一框架,我们批判性地评估公认的SCI方法及其与当代需求的一致性。我们的发现揭示了可扩展性、效率和与现代成像管道相关的重大差距,挑战了SPN作为黄金标准的概念。最后,我们提供了一个推进SCI研究的路线图,以解决这些限制并适应不断发展的技术景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source Camera Identification - Do we have a gold standard?
Source Camera Identification (SCI) is vital in digital forensics, yet its most prominent approach, Sensor Pattern Noise (SPN), faces new challenges in the era of modern devices and vast media datasets. This paper introduces the Source Camera Target Model (SCTM) to classify SCI approaches and formally defines three core problem classes: Verification, Identification, and Exploration. For each, we outline key evaluation metrics tailored to practical use cases. Applying this framework, we critically assess recognized SCI methods and their alignment with contemporary needs. Our findings expose significant gaps in scalability, efficiency, and relevance to modern imaging pipelines, challenging the notion of SPN as a gold standard. Finally, we provide a roadmap for advancing SCI research to address these limitations and adapt to evolving technological landscapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信