基于轻量级深度神经网络的核磁共振波谱降噪

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Haolin Zhan , Qiyuan Fang , Jiawei Liu , Xiaoqi Shi , Xinyu Chen , Yuqing Huang , Zhong Chen
{"title":"基于轻量级深度神经网络的核磁共振波谱降噪","authors":"Haolin Zhan ,&nbsp;Qiyuan Fang ,&nbsp;Jiawei Liu ,&nbsp;Xiaoqi Shi ,&nbsp;Xinyu Chen ,&nbsp;Yuqing Huang ,&nbsp;Zhong Chen","doi":"10.3866/PKU.WHXB202310045","DOIUrl":null,"url":null,"abstract":"<div><div>Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 2","pages":"Article 100017"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network\",\"authors\":\"Haolin Zhan ,&nbsp;Qiyuan Fang ,&nbsp;Jiawei Liu ,&nbsp;Xiaoqi Shi ,&nbsp;Xinyu Chen ,&nbsp;Yuqing Huang ,&nbsp;Zhong Chen\",\"doi\":\"10.3866/PKU.WHXB202310045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 2\",\"pages\":\"Article 100017\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824000171\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000171","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振(NMR)波谱是一种强大的非侵入性表征技术,用于探测分子结构和提供定量分析,然而,核磁共振的进一步应用通常受到低灵敏度性能的限制,特别是在异核实验中。在此,我们提出了一种轻量级的深度学习协议,用于高质量,可靠和非常快速的核磁共振波谱降噪。该深度学习(DL)协议具有轻量级网络优势和快速的计算效率,可以有效地减少噪声和杂散信号,并恢复几乎完全淹没在严重噪声中的所需弱峰值,从而实现显着的信噪比(SNR)提高。此外,它能够在频域中实现令人满意的频谱去噪,并允许人们仅使用物理驱动的合成NMR数据学习来区分真实信号和噪声伪影。此外,训练出的轻量级网络模型对一维和多维核磁共振波谱具有通用性,可以应用于不同的化学样品。因此,本研究中提出的深度学习方法在化学、生物学、材料、生命科学等领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network

Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network
Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信