量子网络:使用经典深度学习-量子迁移学习的增强型糖尿病视网膜病变检测模型

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-01-25 DOI:10.1016/j.mex.2025.103185
Manish Bali , Ved Prakash Mishra , Anuradha Yenkikar , Diptee Chikmurge
{"title":"量子网络:使用经典深度学习-量子迁移学习的增强型糖尿病视网膜病变检测模型","authors":"Manish Bali ,&nbsp;Ved Prakash Mishra ,&nbsp;Anuradha Yenkikar ,&nbsp;Diptee Chikmurge","doi":"10.1016/j.mex.2025.103185","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic Retinopathy (DR), a diabetes-related eye condition, damages retinal blood vessels and can lead to vision loss if undetected early. Precise diagnosis is challenging due to subtle, varied symptoms. While classical deep learning (DL) models like CNNs and ResNet's are widely used, they face resource and accuracy limitations. Quantum computing, leveraging quantum mechanics, offers revolutionary potential for faster problem-solving across fields like cryptography, optimization, and medicine. This research introduces QuantumNet, a hybrid model combining classical DL and quantum transfer learning to enhance DR detection. QuantumNet demonstrates high accuracy and resource efficiency, providing a transformative solution for DR detection and broader medical imaging applications. The method is as follows:<ul><li><span>•</span><span><div>Evaluate three classical deep learning models—CNN, ResNet50, and MobileNetV2—using the APTOS 2019 blindness detection dataset on Kaggle to identify the best-performing model for integration.</div></span></li><li><span>•</span><span><div>QuantumNet combines the best-performing classical DL model for feature extraction with a variational quantum classifier, leveraging quantum transfer learning for enhanced diagnostics, validated statistically and on Google Cirq using standard metrics.</div></span></li><li><span>•</span><span><div>QuantumNet achieves 94.11 % accuracy, surpassing classical DL models and prior research by 11.93 percentage points, demonstrating its potential for accurate, efficient DR detection and broader medical imaging applications.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103185"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuantumNet: An enhanced diabetic retinopathy detection model using classical deep learning-quantum transfer learning\",\"authors\":\"Manish Bali ,&nbsp;Ved Prakash Mishra ,&nbsp;Anuradha Yenkikar ,&nbsp;Diptee Chikmurge\",\"doi\":\"10.1016/j.mex.2025.103185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic Retinopathy (DR), a diabetes-related eye condition, damages retinal blood vessels and can lead to vision loss if undetected early. Precise diagnosis is challenging due to subtle, varied symptoms. While classical deep learning (DL) models like CNNs and ResNet's are widely used, they face resource and accuracy limitations. Quantum computing, leveraging quantum mechanics, offers revolutionary potential for faster problem-solving across fields like cryptography, optimization, and medicine. This research introduces QuantumNet, a hybrid model combining classical DL and quantum transfer learning to enhance DR detection. QuantumNet demonstrates high accuracy and resource efficiency, providing a transformative solution for DR detection and broader medical imaging applications. The method is as follows:<ul><li><span>•</span><span><div>Evaluate three classical deep learning models—CNN, ResNet50, and MobileNetV2—using the APTOS 2019 blindness detection dataset on Kaggle to identify the best-performing model for integration.</div></span></li><li><span>•</span><span><div>QuantumNet combines the best-performing classical DL model for feature extraction with a variational quantum classifier, leveraging quantum transfer learning for enhanced diagnostics, validated statistically and on Google Cirq using standard metrics.</div></span></li><li><span>•</span><span><div>QuantumNet achieves 94.11 % accuracy, surpassing classical DL models and prior research by 11.93 percentage points, demonstrating its potential for accurate, efficient DR detection and broader medical imaging applications.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103185\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)是一种与糖尿病相关的眼部疾病,它会损害视网膜血管,如果不及早发现,可能导致视力丧失。由于症状微妙多样,精确诊断具有挑战性。虽然cnn和ResNet等经典深度学习(DL)模型被广泛使用,但它们面临资源和准确性的限制。量子计算利用量子力学,为更快地解决密码学、优化和医学等领域的问题提供了革命性的潜力。本研究引入量子网络模型,结合经典深度学习和量子迁移学习的混合模型来增强DR检测。QuantumNet展示了高精度和资源效率,为DR检测和更广泛的医学成像应用提供了变革性的解决方案。•使用Kaggle上的APTOS 2019盲检测数据集评估三种经典深度学习模型——cnn、ResNet50和mobilenetv2,以确定表现最佳的集成模型。•QuantumNet将性能最佳的经典深度学习模型与变分量子分类器相结合,利用量子迁移学习进行增强诊断,并使用标准指标在谷歌Cirq上进行统计验证。•QuantumNet达到94.11%的准确率,比经典DL模型和先前的研究高出11.93个百分点,显示出其在准确、高效的DR检测和更广泛的医学成像应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

QuantumNet: An enhanced diabetic retinopathy detection model using classical deep learning-quantum transfer learning

QuantumNet: An enhanced diabetic retinopathy detection model using classical deep learning-quantum transfer learning
Diabetic Retinopathy (DR), a diabetes-related eye condition, damages retinal blood vessels and can lead to vision loss if undetected early. Precise diagnosis is challenging due to subtle, varied symptoms. While classical deep learning (DL) models like CNNs and ResNet's are widely used, they face resource and accuracy limitations. Quantum computing, leveraging quantum mechanics, offers revolutionary potential for faster problem-solving across fields like cryptography, optimization, and medicine. This research introduces QuantumNet, a hybrid model combining classical DL and quantum transfer learning to enhance DR detection. QuantumNet demonstrates high accuracy and resource efficiency, providing a transformative solution for DR detection and broader medical imaging applications. The method is as follows:
  • Evaluate three classical deep learning models—CNN, ResNet50, and MobileNetV2—using the APTOS 2019 blindness detection dataset on Kaggle to identify the best-performing model for integration.
  • QuantumNet combines the best-performing classical DL model for feature extraction with a variational quantum classifier, leveraging quantum transfer learning for enhanced diagnostics, validated statistically and on Google Cirq using standard metrics.
  • QuantumNet achieves 94.11 % accuracy, surpassing classical DL models and prior research by 11.93 percentage points, demonstrating its potential for accurate, efficient DR detection and broader medical imaging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信