Shuangjun Li , Zhixin Huang , Yuanming Li , Shuai Deng , Xiangkun Elvis Cao
{"title":"基于情景的建模预测材料性能的方法:固体胺CO2吸附剂的案例研究","authors":"Shuangjun Li , Zhixin Huang , Yuanming Li , Shuai Deng , Xiangkun Elvis Cao","doi":"10.1016/j.egyai.2025.100477","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional materials informatics leverages big data and machine learning (ML) to forecast material performance based on structural features but often overlooks valuable textual information. In this work, we proposed a novel methodology for predicting material performance through context-based modeling using large language models (LLMs). This method integrates both numerical and textual information, enhancing predictive accuracy and scalability. In the case study, the approach is applied to predict the performance of solid amine CO<sub>2</sub> adsorbents under direct air capture (DAC) conditions. ChatGPT 4o model was used to employ in-context learning to predict CO<sub>2</sub> adsorption uptake based on input features, including material properties and experimental conditions. The results show that context-based modeling can reduce prediction error in comparison to traditional ML models in the prediction task. We adopted Sapley Additive exPlanations (SHAP) to further elucidate the importance of various input features. This work highlights the potential of LLMs in materials science, offering a cost-effective, efficient solution for complex predictive tasks.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100477"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for predicting material performance by context-based modeling: A case study on solid amine CO2 adsorbents\",\"authors\":\"Shuangjun Li , Zhixin Huang , Yuanming Li , Shuai Deng , Xiangkun Elvis Cao\",\"doi\":\"10.1016/j.egyai.2025.100477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional materials informatics leverages big data and machine learning (ML) to forecast material performance based on structural features but often overlooks valuable textual information. In this work, we proposed a novel methodology for predicting material performance through context-based modeling using large language models (LLMs). This method integrates both numerical and textual information, enhancing predictive accuracy and scalability. In the case study, the approach is applied to predict the performance of solid amine CO<sub>2</sub> adsorbents under direct air capture (DAC) conditions. ChatGPT 4o model was used to employ in-context learning to predict CO<sub>2</sub> adsorption uptake based on input features, including material properties and experimental conditions. The results show that context-based modeling can reduce prediction error in comparison to traditional ML models in the prediction task. We adopted Sapley Additive exPlanations (SHAP) to further elucidate the importance of various input features. This work highlights the potential of LLMs in materials science, offering a cost-effective, efficient solution for complex predictive tasks.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"20 \",\"pages\":\"Article 100477\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Methodology for predicting material performance by context-based modeling: A case study on solid amine CO2 adsorbents
Traditional materials informatics leverages big data and machine learning (ML) to forecast material performance based on structural features but often overlooks valuable textual information. In this work, we proposed a novel methodology for predicting material performance through context-based modeling using large language models (LLMs). This method integrates both numerical and textual information, enhancing predictive accuracy and scalability. In the case study, the approach is applied to predict the performance of solid amine CO2 adsorbents under direct air capture (DAC) conditions. ChatGPT 4o model was used to employ in-context learning to predict CO2 adsorption uptake based on input features, including material properties and experimental conditions. The results show that context-based modeling can reduce prediction error in comparison to traditional ML models in the prediction task. We adopted Sapley Additive exPlanations (SHAP) to further elucidate the importance of various input features. This work highlights the potential of LLMs in materials science, offering a cost-effective, efficient solution for complex predictive tasks.