无定形高熵FeCoCrMnBS (Oxy)氢氧化物促进析氧反应的设计

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu
{"title":"无定形高熵FeCoCrMnBS (Oxy)氢氧化物促进析氧反应的设计","authors":"Xin Han ,&nbsp;Zhihao Cheng ,&nbsp;Jinfeng Zhang ,&nbsp;Jie Liu ,&nbsp;Cheng Zhong ,&nbsp;Wenbin Hu","doi":"10.3866/PKU.WHXB202404023","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient electrocatalysts towards the oxygen evolution reaction (OER) are vital for water splitting. Herein, a novel FeCoCrMnBS high-entropy (Oxy) hydroxide (HEH) is synthesized on a nickel foam (NF) surface <em>via</em> a facile approach. The FeCoCrMnBS HEH possesses a porous morphology composed of plentiful ultra-thin nanosheets with the amorphous structure. The obtained FeCoCrMnBS/NF electrode exhibits exceptional electrocatalytic OER activity in alkaline solution, requiring only 290 ​mV overpotential for 100 ​mA ​· ​cm<sup>−2</sup>. Moreover, this catalyst displays a long-term durability of over 120 ​h at 10 ​mA ​· ​cm<sup>−2</sup>. The enhanced catalytic performance benefits from the unique amorphous structure and the positive synergy effect between B and S, promoting the formation of SO<sub>4</sub><sup>2−</sup> and thus weakening the adsorption of intermediates in OER on the catalyst surface. This work provides a new strategy for the design of desirable OER electrocatalysts.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 4","pages":"Article 100033"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of amorphous high-entropy FeCoCrMnBS (Oxy) hydroxides for boosting oxygen evolution reaction\",\"authors\":\"Xin Han ,&nbsp;Zhihao Cheng ,&nbsp;Jinfeng Zhang ,&nbsp;Jie Liu ,&nbsp;Cheng Zhong ,&nbsp;Wenbin Hu\",\"doi\":\"10.3866/PKU.WHXB202404023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient electrocatalysts towards the oxygen evolution reaction (OER) are vital for water splitting. Herein, a novel FeCoCrMnBS high-entropy (Oxy) hydroxide (HEH) is synthesized on a nickel foam (NF) surface <em>via</em> a facile approach. The FeCoCrMnBS HEH possesses a porous morphology composed of plentiful ultra-thin nanosheets with the amorphous structure. The obtained FeCoCrMnBS/NF electrode exhibits exceptional electrocatalytic OER activity in alkaline solution, requiring only 290 ​mV overpotential for 100 ​mA ​· ​cm<sup>−2</sup>. Moreover, this catalyst displays a long-term durability of over 120 ​h at 10 ​mA ​· ​cm<sup>−2</sup>. The enhanced catalytic performance benefits from the unique amorphous structure and the positive synergy effect between B and S, promoting the formation of SO<sub>4</sub><sup>2−</sup> and thus weakening the adsorption of intermediates in OER on the catalyst surface. This work provides a new strategy for the design of desirable OER electrocatalysts.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 4\",\"pages\":\"Article 100033\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100068182400033X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100068182400033X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效的析氧反应电催化剂对水的裂解至关重要。本文通过简单的方法在泡沫镍(NF)表面合成了一种新型FeCoCrMnBS高熵氢氧化物(HEH)。FeCoCrMnBS HEH具有由大量超薄纳米片组成的多孔结构,具有非晶结构。所得FeCoCrMnBS/NF电极在碱性溶液中表现出优异的电催化OER活性,100 mA·cm−2的过电位仅需290 mV。此外,该催化剂在10 mA·cm−2下具有超过120 h的长期耐久性。催化性能的增强得益于其独特的非晶结构和B与S之间的正协同效应,促进了SO42−的形成,从而减弱了OER中中间体在催化剂表面的吸附。这项工作为设计理想的OER电催化剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of amorphous high-entropy FeCoCrMnBS (Oxy) hydroxides for boosting oxygen evolution reaction

Design of amorphous high-entropy FeCoCrMnBS (Oxy) hydroxides for boosting oxygen evolution reaction
The efficient electrocatalysts towards the oxygen evolution reaction (OER) are vital for water splitting. Herein, a novel FeCoCrMnBS high-entropy (Oxy) hydroxide (HEH) is synthesized on a nickel foam (NF) surface via a facile approach. The FeCoCrMnBS HEH possesses a porous morphology composed of plentiful ultra-thin nanosheets with the amorphous structure. The obtained FeCoCrMnBS/NF electrode exhibits exceptional electrocatalytic OER activity in alkaline solution, requiring only 290 ​mV overpotential for 100 ​mA ​· ​cm−2. Moreover, this catalyst displays a long-term durability of over 120 ​h at 10 ​mA ​· ​cm−2. The enhanced catalytic performance benefits from the unique amorphous structure and the positive synergy effect between B and S, promoting the formation of SO42− and thus weakening the adsorption of intermediates in OER on the catalyst surface. This work provides a new strategy for the design of desirable OER electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信