Cd0.5Zn0.5S纳米棒在Ti3C2 MXene纳米片上原位生长,用于高效可见光驱动光催化析氢

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai
{"title":"Cd0.5Zn0.5S纳米棒在Ti3C2 MXene纳米片上原位生长,用于高效可见光驱动光催化析氢","authors":"Qin Li ,&nbsp;Huihui Zhang ,&nbsp;Huajun Gu ,&nbsp;Yuanyuan Cui ,&nbsp;Ruihua Gao ,&nbsp;Wei-Lin Dai","doi":"10.3866/PKU.WHXB202402016","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of energy scarcities and ecological concerns, the process of photocatalytic hydrogen evolution emerges as a critical method for transforming solar energy into chemical energy. Central to this technology is the crafting of photocatalysts that are not only efficient and durable but also economically viable. The key to creating photocatalysts that boast superior hydrogen production capabilities lies in enhancing the separation and transfer of photo-generated electrons and holes. This study introduces a binary heterojunction photocatalyst, featuring a combination of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S and Ti<sub>3</sub>C<sub>2</sub> MXene, synthesized <em>via</em> an <em>in situ</em> hydrothermal method. In the composite, slender Cd<sub>0.5</sub>Zn<sub>0.5</sub>S nanorods are uniformly coated over the surface of single layer Ti<sub>3</sub>C<sub>2</sub> nanosheets, forming a Schottky heterojunction at the material interface. This structure enhances the separation efficiency of photo-generated electrons and holes, thereby improving the utilization of light. With 0.5 wt % (mass fraction) of Ti<sub>3</sub>C<sub>2</sub> MXene incorporated, we observed a peak photocatalytic H<sub>2</sub> generation rate of 15.56 mmol g<sup>−1</sup> h<sup>−1</sup>, outperforming the baseline Cd<sub>0.5</sub>Zn<sub>0.5</sub>S by 2.56 times. Notably, the photocatalytic efficiency remained largely unchanged after five cycles. This composite achieved the highest apparent quantum efficiency (AQE) of 18.4 % when exposed to 350 nm UV light. Various characterization techniques, including <em>in situ</em> X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption (fs-TA) spectroscopy, along with density functional theory (DFT) calculations, have further substantiated that the formation of a Schottky heterojunction at the interface is crucial for enhancing the photocatalytic hydrogen evolution performance of the composite material. This paper demonstrates the effectiveness of the novel carbon based material MXene as a co-catalyst for improving the performance of photocatalysts and offers a viable approach for the construction of MXene-containing photocatalytic hydrogen evolution catalysts.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 4","pages":"Article 100031"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ growth of Cd0.5Zn0.5S nanorods on Ti3C2 MXene nanosheet for efficient visible-light-driven photocatalytic hydrogen evolution\",\"authors\":\"Qin Li ,&nbsp;Huihui Zhang ,&nbsp;Huajun Gu ,&nbsp;Yuanyuan Cui ,&nbsp;Ruihua Gao ,&nbsp;Wei-Lin Dai\",\"doi\":\"10.3866/PKU.WHXB202402016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Against the backdrop of energy scarcities and ecological concerns, the process of photocatalytic hydrogen evolution emerges as a critical method for transforming solar energy into chemical energy. Central to this technology is the crafting of photocatalysts that are not only efficient and durable but also economically viable. The key to creating photocatalysts that boast superior hydrogen production capabilities lies in enhancing the separation and transfer of photo-generated electrons and holes. This study introduces a binary heterojunction photocatalyst, featuring a combination of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S and Ti<sub>3</sub>C<sub>2</sub> MXene, synthesized <em>via</em> an <em>in situ</em> hydrothermal method. In the composite, slender Cd<sub>0.5</sub>Zn<sub>0.5</sub>S nanorods are uniformly coated over the surface of single layer Ti<sub>3</sub>C<sub>2</sub> nanosheets, forming a Schottky heterojunction at the material interface. This structure enhances the separation efficiency of photo-generated electrons and holes, thereby improving the utilization of light. With 0.5 wt % (mass fraction) of Ti<sub>3</sub>C<sub>2</sub> MXene incorporated, we observed a peak photocatalytic H<sub>2</sub> generation rate of 15.56 mmol g<sup>−1</sup> h<sup>−1</sup>, outperforming the baseline Cd<sub>0.5</sub>Zn<sub>0.5</sub>S by 2.56 times. Notably, the photocatalytic efficiency remained largely unchanged after five cycles. This composite achieved the highest apparent quantum efficiency (AQE) of 18.4 % when exposed to 350 nm UV light. Various characterization techniques, including <em>in situ</em> X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption (fs-TA) spectroscopy, along with density functional theory (DFT) calculations, have further substantiated that the formation of a Schottky heterojunction at the interface is crucial for enhancing the photocatalytic hydrogen evolution performance of the composite material. This paper demonstrates the effectiveness of the novel carbon based material MXene as a co-catalyst for improving the performance of photocatalysts and offers a viable approach for the construction of MXene-containing photocatalytic hydrogen evolution catalysts.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 4\",\"pages\":\"Article 100031\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681824000316\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000316","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在能源短缺和生态问题的背景下,光催化析氢过程成为将太阳能转化为化学能的关键方法。这项技术的核心是制作光催化剂,不仅高效耐用,而且经济可行。制造具有超强产氢能力的光催化剂的关键在于增强光生电子和空穴的分离和转移。本研究采用原位水热法合成了Cd0.5Zn0.5S和Ti3C2 MXene二元异质结光催化剂。在复合材料中,细长的Cd0.5Zn0.5S纳米棒均匀地涂覆在单层Ti3C2纳米片表面,在材料界面处形成肖特基异质结。这种结构提高了光生电子和空穴的分离效率,从而提高了光的利用率。当Ti3C2 MXene加入量为0.5 wt %(质量分数)时,我们观察到光催化H2生成速率峰值为15.56 mmol g−1 h−1,比基线Cd0.5Zn0.5S高出2.56倍。值得注意的是,经过五个循环后,光催化效率基本保持不变。该复合材料在350 nm紫外光下的表观量子效率最高,达到18.4%。各种表征技术,包括原位x射线光电子能谱(XPS)和飞秒瞬态吸收(fs-TA)光谱,以及密度泛函理论(DFT)计算,进一步证实了在界面处形成肖特基异质结对于增强复合材料的光催化析氢性能至关重要。本文论证了新型碳基材料MXene作为助催化剂对提高光催化剂性能的有效性,为构建含MXene光催化析氢催化剂提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ growth of Cd0.5Zn0.5S nanorods on Ti3C2 MXene nanosheet for efficient visible-light-driven photocatalytic hydrogen evolution

In situ growth of Cd0.5Zn0.5S nanorods on Ti3C2 MXene nanosheet for efficient visible-light-driven photocatalytic hydrogen evolution
Against the backdrop of energy scarcities and ecological concerns, the process of photocatalytic hydrogen evolution emerges as a critical method for transforming solar energy into chemical energy. Central to this technology is the crafting of photocatalysts that are not only efficient and durable but also economically viable. The key to creating photocatalysts that boast superior hydrogen production capabilities lies in enhancing the separation and transfer of photo-generated electrons and holes. This study introduces a binary heterojunction photocatalyst, featuring a combination of Cd0.5Zn0.5S and Ti3C2 MXene, synthesized via an in situ hydrothermal method. In the composite, slender Cd0.5Zn0.5S nanorods are uniformly coated over the surface of single layer Ti3C2 nanosheets, forming a Schottky heterojunction at the material interface. This structure enhances the separation efficiency of photo-generated electrons and holes, thereby improving the utilization of light. With 0.5 wt % (mass fraction) of Ti3C2 MXene incorporated, we observed a peak photocatalytic H2 generation rate of 15.56 mmol g−1 h−1, outperforming the baseline Cd0.5Zn0.5S by 2.56 times. Notably, the photocatalytic efficiency remained largely unchanged after five cycles. This composite achieved the highest apparent quantum efficiency (AQE) of 18.4 % when exposed to 350 nm UV light. Various characterization techniques, including in situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption (fs-TA) spectroscopy, along with density functional theory (DFT) calculations, have further substantiated that the formation of a Schottky heterojunction at the interface is crucial for enhancing the photocatalytic hydrogen evolution performance of the composite material. This paper demonstrates the effectiveness of the novel carbon based material MXene as a co-catalyst for improving the performance of photocatalysts and offers a viable approach for the construction of MXene-containing photocatalytic hydrogen evolution catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信