基于深度学习的非固定密度对比基底地形重力有效反演

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongzhu Cai , Siyuan He , Ziang He , Shuang Liu , Lichao Liu , Xiangyun Hu
{"title":"基于深度学习的非固定密度对比基底地形重力有效反演","authors":"Hongzhu Cai ,&nbsp;Siyuan He ,&nbsp;Ziang He ,&nbsp;Shuang Liu ,&nbsp;Lichao Liu ,&nbsp;Xiangyun Hu","doi":"10.1016/j.cageo.2024.105832","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering basement relief from gravity data plays a crucial role in understanding regional tectonics and advancing resource exploration. Traditional inversion methods typically assume a known density contrast between sedimentary layers and basement rocks to simplify the inverse problem, despite the reality that this contrast varies significantly. To overcome this limitation, we propose a deep learning approach to estimate basement relief from gravity data without requiring a fixed density contrast. We develop two distinct model generation methods to prepare the dataset and validate our neural network through comprehensive synthetic studies. Utilizing a CNN-LSTM architecture, which performs robustly across all tests, we apply this method to both synthetic and field case studies. The results demonstrate that our approach accurately estimates basement relief under variable density contrasts. Furthermore, our testing framework identifies the most effective network architectures and model generation strategies for tackling complex, multi-source geophysical problems.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105832"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective gravity inversion of basement relief with unfixed density contrast using deep learning\",\"authors\":\"Hongzhu Cai ,&nbsp;Siyuan He ,&nbsp;Ziang He ,&nbsp;Shuang Liu ,&nbsp;Lichao Liu ,&nbsp;Xiangyun Hu\",\"doi\":\"10.1016/j.cageo.2024.105832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recovering basement relief from gravity data plays a crucial role in understanding regional tectonics and advancing resource exploration. Traditional inversion methods typically assume a known density contrast between sedimentary layers and basement rocks to simplify the inverse problem, despite the reality that this contrast varies significantly. To overcome this limitation, we propose a deep learning approach to estimate basement relief from gravity data without requiring a fixed density contrast. We develop two distinct model generation methods to prepare the dataset and validate our neural network through comprehensive synthetic studies. Utilizing a CNN-LSTM architecture, which performs robustly across all tests, we apply this method to both synthetic and field case studies. The results demonstrate that our approach accurately estimates basement relief under variable density contrasts. Furthermore, our testing framework identifies the most effective network architectures and model generation strategies for tackling complex, multi-source geophysical problems.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"196 \",\"pages\":\"Article 105832\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424003157\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424003157","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

从重力资料中恢复基底起伏对认识区域构造和推进资源勘探具有重要意义。传统的反演方法通常假设沉积层和基岩之间的密度对比是已知的,以简化反演问题,尽管现实情况是这种对比差异很大。为了克服这一限制,我们提出了一种深度学习方法,在不需要固定密度对比的情况下,从重力数据中估计基底起伏。我们开发了两种不同的模型生成方法来准备数据集,并通过综合研究验证我们的神经网络。利用CNN-LSTM架构,它在所有测试中都表现稳健,我们将这种方法应用于综合和现场案例研究。结果表明,我们的方法可以准确地估计变密度对比下的基底起伏。此外,我们的测试框架确定了最有效的网络架构和模型生成策略,以解决复杂的多源地球物理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective gravity inversion of basement relief with unfixed density contrast using deep learning
Recovering basement relief from gravity data plays a crucial role in understanding regional tectonics and advancing resource exploration. Traditional inversion methods typically assume a known density contrast between sedimentary layers and basement rocks to simplify the inverse problem, despite the reality that this contrast varies significantly. To overcome this limitation, we propose a deep learning approach to estimate basement relief from gravity data without requiring a fixed density contrast. We develop two distinct model generation methods to prepare the dataset and validate our neural network through comprehensive synthetic studies. Utilizing a CNN-LSTM architecture, which performs robustly across all tests, we apply this method to both synthetic and field case studies. The results demonstrate that our approach accurately estimates basement relief under variable density contrasts. Furthermore, our testing framework identifies the most effective network architectures and model generation strategies for tackling complex, multi-source geophysical problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信