FusionFireNet:基于时空数据集的短期野火热点预测CNN-LSTM模型

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Niloofar Alizadeh , Masoud Mahdianpari , Emadoddin Hemmati , Mohammad Marjani
{"title":"FusionFireNet:基于时空数据集的短期野火热点预测CNN-LSTM模型","authors":"Niloofar Alizadeh ,&nbsp;Masoud Mahdianpari ,&nbsp;Emadoddin Hemmati ,&nbsp;Mohammad Marjani","doi":"10.1016/j.rsase.2024.101436","DOIUrl":null,"url":null,"abstract":"<div><div>Recurrent wildfires pose an immense and urgent global challenge, as they endanger human lives and have significant consequences on society and the economy. In recent years, several studies proposed models aimed at predicting wildfire hotspots to mitigate these catastrophic events. However, the dynamic nature of environmental factors means that hotspot locations can change daily in British Columbia (BC), Canada. Therefore, this study introduces a deep-learning model for daily wildfire hotspot prediction called FusionFireNet. This model was trained using two primary data sources: remote sensing and environmental data. Environmental variables, including meteorological, topographical, and anthropogenic factors (such as distance, population density, and land cover), were collected across the study area with different temporal resolution. For instance, meteorological variables were collected with hourly temporal resolution over the 15 days preceding each wildfire event, along with cumulative maps, date, and coordination cells, while Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data from 15, 10, and 5 days prior were also utilized. To enhance the model's ability to capture temporal, spatial, and spatio-temporal features, an attention mechanism was incorporated to weigh each feature category. Performance evaluation employed multiple metrics, including Mean Squared Error (MSE), Intersection over Union (IoU), Area Under the Curve (AUC), and Dice Coefficient Loss (DCL). The model achieved notable results, with an AUC, IOU, MSE, and DCL of 98%, 0.46, 0.002, and 0.024, respectively. Furthermore, the study underscores the importance of spatio-temporal features in wildfire hotspot prediction. These findings can inform policy-making by identifying high-risk areas and guiding resource allocation. Policymakers can develop targeted prevention strategies, enabling stakeholders to implement proactive measures that enhance wildfire management and protect communities and natural resources.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101436"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FusionFireNet: A CNN-LSTM model for short-term wildfire hotspot prediction utilizing spatio-temporal datasets\",\"authors\":\"Niloofar Alizadeh ,&nbsp;Masoud Mahdianpari ,&nbsp;Emadoddin Hemmati ,&nbsp;Mohammad Marjani\",\"doi\":\"10.1016/j.rsase.2024.101436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recurrent wildfires pose an immense and urgent global challenge, as they endanger human lives and have significant consequences on society and the economy. In recent years, several studies proposed models aimed at predicting wildfire hotspots to mitigate these catastrophic events. However, the dynamic nature of environmental factors means that hotspot locations can change daily in British Columbia (BC), Canada. Therefore, this study introduces a deep-learning model for daily wildfire hotspot prediction called FusionFireNet. This model was trained using two primary data sources: remote sensing and environmental data. Environmental variables, including meteorological, topographical, and anthropogenic factors (such as distance, population density, and land cover), were collected across the study area with different temporal resolution. For instance, meteorological variables were collected with hourly temporal resolution over the 15 days preceding each wildfire event, along with cumulative maps, date, and coordination cells, while Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data from 15, 10, and 5 days prior were also utilized. To enhance the model's ability to capture temporal, spatial, and spatio-temporal features, an attention mechanism was incorporated to weigh each feature category. Performance evaluation employed multiple metrics, including Mean Squared Error (MSE), Intersection over Union (IoU), Area Under the Curve (AUC), and Dice Coefficient Loss (DCL). The model achieved notable results, with an AUC, IOU, MSE, and DCL of 98%, 0.46, 0.002, and 0.024, respectively. Furthermore, the study underscores the importance of spatio-temporal features in wildfire hotspot prediction. These findings can inform policy-making by identifying high-risk areas and guiding resource allocation. Policymakers can develop targeted prevention strategies, enabling stakeholders to implement proactive measures that enhance wildfire management and protect communities and natural resources.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"37 \",\"pages\":\"Article 101436\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524003008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

频繁发生的野火危及人类生命,并对社会和经济产生重大影响,构成了巨大而紧迫的全球挑战。近年来,一些研究提出了旨在预测野火热点的模型,以减轻这些灾难性事件。然而,环境因素的动态性意味着加拿大不列颠哥伦比亚省(BC)的热点位置每天都在变化。因此,本研究引入了一种名为FusionFireNet的深度学习模型,用于日常野火热点预测。该模型使用两个主要数据源进行训练:遥感和环境数据。环境变量包括气象、地形和人为因素(如距离、人口密度和土地覆盖),在研究区内以不同的时间分辨率收集。例如,在每次野火事件发生前的15天内,以每小时的时间分辨率收集气象变量,以及累积地图、日期和协调单元,同时还利用了15、10和5天前的中分辨率成像光谱仪(MODIS)卫星数据。为了增强模型捕捉时间、空间和时空特征的能力,我们引入了一个注意机制来衡量每个特征类别。性能评估采用多种指标,包括均方误差(MSE)、交联(IoU)、曲线下面积(AUC)和骰子系数损失(DCL)。该模型取得了显著的效果,AUC、IOU、MSE和DCL分别为98%、0.46、0.002和0.024。此外,研究还强调了时空特征在野火热点预测中的重要性。这些发现可以通过确定高风险领域和指导资源分配来为决策提供信息。决策者可以制定有针对性的预防战略,使利益攸关方能够实施主动措施,加强野火管理,保护社区和自然资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FusionFireNet: A CNN-LSTM model for short-term wildfire hotspot prediction utilizing spatio-temporal datasets
Recurrent wildfires pose an immense and urgent global challenge, as they endanger human lives and have significant consequences on society and the economy. In recent years, several studies proposed models aimed at predicting wildfire hotspots to mitigate these catastrophic events. However, the dynamic nature of environmental factors means that hotspot locations can change daily in British Columbia (BC), Canada. Therefore, this study introduces a deep-learning model for daily wildfire hotspot prediction called FusionFireNet. This model was trained using two primary data sources: remote sensing and environmental data. Environmental variables, including meteorological, topographical, and anthropogenic factors (such as distance, population density, and land cover), were collected across the study area with different temporal resolution. For instance, meteorological variables were collected with hourly temporal resolution over the 15 days preceding each wildfire event, along with cumulative maps, date, and coordination cells, while Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite data from 15, 10, and 5 days prior were also utilized. To enhance the model's ability to capture temporal, spatial, and spatio-temporal features, an attention mechanism was incorporated to weigh each feature category. Performance evaluation employed multiple metrics, including Mean Squared Error (MSE), Intersection over Union (IoU), Area Under the Curve (AUC), and Dice Coefficient Loss (DCL). The model achieved notable results, with an AUC, IOU, MSE, and DCL of 98%, 0.46, 0.002, and 0.024, respectively. Furthermore, the study underscores the importance of spatio-temporal features in wildfire hotspot prediction. These findings can inform policy-making by identifying high-risk areas and guiding resource allocation. Policymakers can develop targeted prevention strategies, enabling stakeholders to implement proactive measures that enhance wildfire management and protect communities and natural resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信