面向机器学习的电化学阻抗谱数据预处理探讨

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jingwen Sun, Weitong Zhang, Yuanzhou Chen, Benjamin B. Hoar, Hongyuan Sheng, Jenny Y. Yang, Quanquan Gu and Chong Liu*, 
{"title":"面向机器学习的电化学阻抗谱数据预处理探讨","authors":"Jingwen Sun,&nbsp;Weitong Zhang,&nbsp;Yuanzhou Chen,&nbsp;Benjamin B. Hoar,&nbsp;Hongyuan Sheng,&nbsp;Jenny Y. Yang,&nbsp;Quanquan Gu and Chong Liu*,&nbsp;","doi":"10.1021/acs.jpcc.4c0620610.1021/acs.jpcc.4c06206","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical impedance spectroscopy (EIS) is an important analytical technique for the understanding of electrochemical systems. With the recent advent and burgeoning deployment of machine learning (ML) in EIS analysis, a critical yet hitherto unanswered question emerges: what is the appropriate manner to preprocess the EIS data for ML-based analysis? While the preprocessing of a model’s input data is known to be critical for a successful deployment of the ML model, EIS is known to possess multiple classical venues of data representation, and moreover, a proper data normalization protocol for comparative EIS studies remains elusive. Here, we report the methodology and the outcomes that evaluate the efficacy of multiple data preprocessing methods in an ML-based EIS analysis. Within our proof-of-concept parameter space, plotting the input training data’s impedance magnitude (|<i>Z</i>|) against phase angle (φ) while individually normalizing each EIS curve yields the highest accuracy and robustness in the correspondingly established residual neural network (ResNet) model. Rationalized by additional “importance” analysis of the input data, such a data representation method extracts information and hidden features more effectively. While the Nyquist plot is widely used in manual analysis, a different data representation of EIS data seems equally plausible for ML-based EIS analysis. Our work offers a protocol for future researchers to decide on the proper preprocessing method for different ML applications in electrochemistry on a case-by-case basis.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 2","pages":"1044–1051 1044–1051"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inquiry into the Appropriate Data Preprocessing of Electrochemical Impedance Spectroscopy for Machine Learning\",\"authors\":\"Jingwen Sun,&nbsp;Weitong Zhang,&nbsp;Yuanzhou Chen,&nbsp;Benjamin B. Hoar,&nbsp;Hongyuan Sheng,&nbsp;Jenny Y. Yang,&nbsp;Quanquan Gu and Chong Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0620610.1021/acs.jpcc.4c06206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical impedance spectroscopy (EIS) is an important analytical technique for the understanding of electrochemical systems. With the recent advent and burgeoning deployment of machine learning (ML) in EIS analysis, a critical yet hitherto unanswered question emerges: what is the appropriate manner to preprocess the EIS data for ML-based analysis? While the preprocessing of a model’s input data is known to be critical for a successful deployment of the ML model, EIS is known to possess multiple classical venues of data representation, and moreover, a proper data normalization protocol for comparative EIS studies remains elusive. Here, we report the methodology and the outcomes that evaluate the efficacy of multiple data preprocessing methods in an ML-based EIS analysis. Within our proof-of-concept parameter space, plotting the input training data’s impedance magnitude (|<i>Z</i>|) against phase angle (φ) while individually normalizing each EIS curve yields the highest accuracy and robustness in the correspondingly established residual neural network (ResNet) model. Rationalized by additional “importance” analysis of the input data, such a data representation method extracts information and hidden features more effectively. While the Nyquist plot is widely used in manual analysis, a different data representation of EIS data seems equally plausible for ML-based EIS analysis. Our work offers a protocol for future researchers to decide on the proper preprocessing method for different ML applications in electrochemistry on a case-by-case basis.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 2\",\"pages\":\"1044–1051 1044–1051\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06206\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c06206","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电化学阻抗谱(EIS)是理解电化学体系的重要分析技术。随着最近机器学习(ML)在EIS分析中的出现和迅速部署,一个关键但迄今尚未解决的问题出现了:为基于ML的分析预处理EIS数据的适当方式是什么?虽然已知模型输入数据的预处理对于ML模型的成功部署至关重要,但已知EIS拥有多个经典的数据表示场所,而且,用于比较EIS研究的适当数据规范化协议仍然难以实现。在这里,我们报告了在基于ml的EIS分析中评估多种数据预处理方法有效性的方法和结果。在我们的概念验证参数空间中,绘制输入训练数据的阻抗幅度(|Z|)与相位角(φ)的关系,同时单独规范化每个EIS曲线,在相应建立的残差神经网络(ResNet)模型中产生最高的精度和鲁棒性。通过对输入数据进行额外的“重要性”分析,这种数据表示方法可以更有效地提取信息和隐藏特征。虽然奈奎斯特图广泛用于人工分析,但对于基于ml的EIS分析,EIS数据的不同数据表示似乎同样合理。我们的工作为未来的研究人员提供了一种协议,可以根据具体情况决定电化学中不同ML应用的适当预处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inquiry into the Appropriate Data Preprocessing of Electrochemical Impedance Spectroscopy for Machine Learning

Inquiry into the Appropriate Data Preprocessing of Electrochemical Impedance Spectroscopy for Machine Learning

Electrochemical impedance spectroscopy (EIS) is an important analytical technique for the understanding of electrochemical systems. With the recent advent and burgeoning deployment of machine learning (ML) in EIS analysis, a critical yet hitherto unanswered question emerges: what is the appropriate manner to preprocess the EIS data for ML-based analysis? While the preprocessing of a model’s input data is known to be critical for a successful deployment of the ML model, EIS is known to possess multiple classical venues of data representation, and moreover, a proper data normalization protocol for comparative EIS studies remains elusive. Here, we report the methodology and the outcomes that evaluate the efficacy of multiple data preprocessing methods in an ML-based EIS analysis. Within our proof-of-concept parameter space, plotting the input training data’s impedance magnitude (|Z|) against phase angle (φ) while individually normalizing each EIS curve yields the highest accuracy and robustness in the correspondingly established residual neural network (ResNet) model. Rationalized by additional “importance” analysis of the input data, such a data representation method extracts information and hidden features more effectively. While the Nyquist plot is widely used in manual analysis, a different data representation of EIS data seems equally plausible for ML-based EIS analysis. Our work offers a protocol for future researchers to decide on the proper preprocessing method for different ML applications in electrochemistry on a case-by-case basis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信